Change Management in Declarative Languages

Mihnea Iancu and Florian Rabe

Jacobs University Bremen

July 13, 2012

Motivation

- mathematical knowledge grows relentlessly
- mathematics is intrinsically inter-connected
- formal mathematical libraries already too large to oversee
- need for adequate change management solutions

Motivation: LATIN Library

- LATIN : an atlas of logic formalizations
- inter-connected network of ~ 1000 modules
- based on the MMT/LF logical framework
- highly modular (Little Theories approach)
- difficult to keep an overview (modularity helps but is not enough)
- which declarations does the symbol s depend on
- which declarations depend on the symbol s

LATIN Library : Modularity

Mmт

- a Module System for Mathematical Theories
- generic declarative language
theories, morphisms, declarations, expressions module system
- OMDoc/OpenMath-based XML syntax with Scala-based API
- foundationally independent
- no commitment to a particular logic or logical framework both represented as MmT theories
- concise and natural representation of a variety of systems e.g. Twelf, Mizar, TPTP, OWL

MmT-based MKM services

Foundation independence \rightarrow MmT services carry over to languages represented in Mmт

- presentation

MKM 2008

- interactive browsing
- database
- archival, project management
- querying
- editing (work in progress)

Tuesday, MKM 2012
Wednesday, UITP 2012

- management of change (MoC)

Outline

Management of Change

- MoC is not a new topic; usually involves
- detect changes
see if/how something changed
- compute affected items maintain some notion of dependency
- handle/identify conflicts in SE typically re-compile e.g. Eclipse

Outline

Management of Change

- MoC is not a new topic; usually involves
- detect changes
see if/how something changed
- compute affected items maintain some notion of dependency
- handle/identify conflicts in SE typically re-compile e.g. Eclipse

Outline

- semantic differencing
- fine-grained dependencies
- impact propagation
- some form of a validity guarantee

Mmt Example

Mmt Notions

theories contain constant declarations
constants have components (type and definiens)
components represented as Mmt/OpenMath terms
URIs for each theory/constant/component

$$
\begin{array}{ll}
R_{\text {Rev }}^{1} & \operatorname{Rev}_{2} \\
P L=\{ & P L=\{ \\
\quad \text { bool : type } & \text { form : type } \\
\Rightarrow \text { : bool } \rightarrow \text { bool } \rightarrow \text { bool } & \neg: \text { form } \rightarrow \text { form } \\
\wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } & \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
\Leftrightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } & \Leftrightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
=\lambda x . \lambda y .(x \Rightarrow y) \wedge(y \Rightarrow x) & =\lambda x . \lambda y .(x \Rightarrow y) \wedge(y \Rightarrow x) \\
\} & \}
\end{array}
$$

Mmt Example

Mmt Notions

theories contain constant declarations
constants have components (type and definiens)
components represented as Mmt/OpenMath terms
URIs for each theory/constant/component
$R^{2} v_{1}$

$$
P L=\{
$$

bool: type

$$
\Rightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool }
$$

$$
\wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool }
$$

$$
\Leftrightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool }
$$

$$
=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
$$

Rev_{2}

$$
P L=\{
$$

form: type
$\neg:$ form \rightarrow form
\wedge : bool \rightarrow bool \rightarrow bool
\Leftrightarrow : bool \rightarrow bool \rightarrow bool
$=\lambda x \cdot \lambda y .(x \Rightarrow y) \wedge(y \Rightarrow x)$
\}

Semantic Differencing

- we extend Mmt with a language of changes
- add (\mathcal{A}) and delete (\mathcal{D}) constants
- update (\mathcal{U}) components
- rename (\mathcal{R}) constants

Diff	Δ	$::=\mid \Delta, \delta$
Change	δ	$::=\mathcal{A}\left(T, c: \omega=\omega^{\prime}\right)\left\|\mathcal{D}\left(T, c: \omega=\omega^{\prime}\right)\right\|$
Component	o	$::=\operatorname{tp} \mid$ def $\left., c, o, \omega, \omega^{\prime}\right) \mid \mathcal{R}\left(T, c, c^{\prime}\right)$

Example Revisited

$R^{2} v_{1}$

$$
\begin{aligned}
& P L=\{ \\
& \quad \text { bool }: \text { type } \\
& \Rightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \text { ^: bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \Leftrightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Rev}_{2} \\
& P L=\{ \\
& \quad \text { form : type } \\
& \quad \neg: \text { form } \rightarrow \text { form } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad \Leftrightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x) \\
& \} \quad
\end{aligned}
$$

Example Revisited

$R^{2} v_{1}$

$$
\begin{aligned}
& P L=\{ \\
& \quad \text { bool : type } \\
& \Rightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \\
& \Leftrightarrow \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

$R^{2} v_{2}$

$$
\begin{aligned}
& P L=\{ \\
& \quad \text { form : type } \\
& \quad \neg: \text { form } \rightarrow \text { form } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad \Leftrightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

- $\Delta_{1}=\mathcal{D}(P L$, bool : type $), \mathcal{A}(P L$, form : type $)$, $\mathcal{A}(P L, \neg:$ form \rightarrow form $)$

Example Revisited

$R^{2} v_{1}$

$$
\begin{aligned}
& P L=\{ \\
& \quad \text { bool }: \text { type } \\
& \Rightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \\
& \Leftrightarrow \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

$R^{2} v_{2}$

$$
\begin{aligned}
& P L=\{ \\
& \quad \text { form : type } \\
& \quad \neg: \text { form } \rightarrow \text { form } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad \Leftrightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

- $\Delta_{1}=\mathcal{D}(P L$, bool : type $), \mathcal{A}(P L$, form : type $)$, $\mathcal{A}(P L, \neg$: form \rightarrow form $)$

Example Revisited

$R^{2} v_{1}$

$$
\begin{aligned}
& P L=\{ \\
& \quad \text { bool }: \text { type } \\
& \Rightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \Leftrightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

$R^{2} v_{2}$

$$
\begin{aligned}
& P L=\{ \\
& \quad \text { form : type } \\
& \neg: \text { form } \rightarrow \text { form } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad \Leftrightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

- $\Delta_{1}=\mathcal{D}(P L$, bool : type $), \mathcal{A}(P L$, form : type $)$, $\mathcal{A}(P L, \neg:$ form \rightarrow form $)$
- $\Delta_{2}=\mathcal{D}(P L$, bool : type $), \mathcal{A}(P L$, form : type $)$, $\mathcal{D}(P L, \Rightarrow$ bool \rightarrow bool \rightarrow bool $), \mathcal{A}(P L, \neg:$ form \rightarrow form $)$

Example Revisited

$R^{2} v_{1}$

$$
\begin{aligned}
& P L=\{ \\
& \text { bool : type } \\
& \Rightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad \Leftrightarrow \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

Rev_{2}

$$
\begin{aligned}
& P L=\{ \\
& \quad \text { form : type } \\
& \quad \neg: \text { form } \rightarrow \text { form } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad \Leftrightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

- $\Delta_{1}=\mathcal{D}(P L$, bool : type $), \mathcal{A}(P L$, form : type $)$, $\mathcal{A}(P L, \neg:$ form \rightarrow form $)$
- $\Delta_{2}=\mathcal{D}(P L$, bool : type $), \mathcal{A}(P L$, form : type $)$,
$\mathcal{D}(P L, \Rightarrow$ bool \rightarrow bool \rightarrow bool $), \mathcal{A}(P L, \neg:$ form \rightarrow form $)$

Example Revisited

$R^{2} v_{1}$

$$
\begin{aligned}
& P L=\{ \\
& \text { bool : type } \\
& \Rightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad \Leftrightarrow \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

$R^{2} v_{2}$

$$
\begin{aligned}
& P L=\{ \\
& \quad \text { form : type } \\
& \quad \neg: \text { form } \rightarrow \text { form } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad \Leftrightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

- $\Delta_{1}=\mathcal{D}(P L$, bool : type $), \mathcal{A}(P L$, form : type $)$, $\mathcal{A}(P L, \neg$: form \rightarrow form $)$
- $\Delta_{2}=\mathcal{D}(P L$, bool : type $), \mathcal{A}(P L$, form : type $)$,
$\mathcal{D}(P L, \Rightarrow$: bool \rightarrow bool \rightarrow bool $), \mathcal{A}(P L, \neg:$ form \rightarrow form $)$
- $\Delta_{3}=\mathcal{R}$ (PL, bool, form),
$\mathcal{D}(P L, \Rightarrow$ bool \rightarrow bool \rightarrow bool $), \mathcal{A}(P L, \neg:$ form \rightarrow form $)$

Example Revisited

$R^{2} v_{1}$

$$
\begin{aligned}
& P L=\{ \\
& \text { bool }: \text { type } \\
& \Rightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \\
& \Leftrightarrow \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

$R^{2} v_{2}$

$$
\begin{aligned}
& P L=\{ \\
& \quad \text { form : type } \\
& \quad \neg: \text { form } \rightarrow \text { form } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad \Leftrightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

- $\Delta_{1}=\mathcal{D}(P L$, bool : type $), \mathcal{A}(P L$, form : type $)$, $\mathcal{A}(P L, \neg:$ form \rightarrow form $)$
- $\Delta_{2}=\mathcal{D}(P L$, bool : type $), \mathcal{A}(P L$, form : type $)$,
$\mathcal{D}(P L, \Rightarrow$: bool \rightarrow bool \rightarrow bool $), \mathcal{A}(P L, \neg:$ form \rightarrow form $)$
- $\Delta_{3}=\mathcal{R}(P L$, bool, form $)$,
$\mathcal{D}(P L, \Rightarrow$ bool \rightarrow bool \rightarrow bool $), \mathcal{A}(P L, \neg:$ form \rightarrow form $)$

Example Revisited

$R^{2} v_{1}$

$$
\begin{aligned}
& P L=\{ \\
& \text { bool }: \text { type } \\
& \Rightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \\
& \Leftrightarrow \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

$R^{2} v_{2}$

$$
\begin{aligned}
& P L=\{ \\
& \quad \text { form : type } \\
& \quad \neg: \text { form } \rightarrow \text { form } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad \Leftrightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

- $\Delta_{1}=\mathcal{D}(P L$, bool : type $), \mathcal{A}(P L$, form : type $)$, $\mathcal{A}(P L, \neg:$ form \rightarrow form $)$
- $\Delta_{2}=\mathcal{D}(P L$, bool : type $), \mathcal{A}(P L$, form : type $)$,
$\mathcal{D}(P L, \Rightarrow$: bool \rightarrow bool \rightarrow bool $), \mathcal{A}(P L, \neg:$ form \rightarrow form $)$
- $\Delta_{3}=\mathcal{R}(P L$, bool, form $)$,
$\mathcal{D}(P L, \Rightarrow$ bool \rightarrow bool \rightarrow bool $), \mathcal{A}(P L, \neg$ form \rightarrow form $)$
- $\Delta_{4}=\mathcal{D}(P L$, bool : type $), \mathcal{D}(P L, x$: type $)$

Example Revisited

$R^{2} v_{1}$

$$
\begin{aligned}
& P L=\{ \\
& \text { bool }: \text { type } \\
& \Rightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \\
& \Leftrightarrow \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

$R^{2} v_{2}$

$$
\begin{aligned}
& P L=\{ \\
& \quad \text { form : type } \\
& \quad \neg: \text { form } \rightarrow \text { form } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad \Leftrightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

- $\Delta_{1}=\mathcal{D}(P L$, bool : type $), \mathcal{A}(P L$, form : type $)$, $\mathcal{A}(P L, \neg:$ form \rightarrow form $)$
- $\Delta_{2}=\mathcal{D}(P L$, bool : type $), \mathcal{A}(P L$, form : type $)$,
$\mathcal{D}(P L, \Rightarrow$: bool \rightarrow bool \rightarrow bool $), \mathcal{A}(P L, \neg:$ form \rightarrow form $)$
- $\Delta_{3}=\mathcal{R}(P L$, bool, form $)$,
$\mathcal{D}(P L, \Rightarrow$: bool \rightarrow bool \rightarrow bool $), \mathcal{A}(P L, \neg$ form \rightarrow form $)$
- $\Delta_{4}=\mathcal{D}(P L$, bool : type $), \mathcal{D}(P L, x$: type $)$

Example Revisited

$R^{2} v_{1}$

$$
\begin{aligned}
& P L=\{ \\
& \text { bool }: \text { type } \\
& \Rightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \\
& \Leftrightarrow \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

$R^{2} v_{2}$

$$
\begin{aligned}
& P L=\{ \\
& \quad \text { form : type } \\
& \quad \neg: \text { form } \rightarrow \text { form } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad \Leftrightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

- $\Delta_{1}=\mathcal{D}(P L$, bool : type $), \mathcal{A}(P L$, form : type $)$, $\mathcal{A}(P L, \neg$: form \rightarrow form $)$
- $\Delta_{2}=\mathcal{D}(P L$, bool : type $), \mathcal{A}(P L$, form : type $)$,
$\mathcal{D}(P L, \Rightarrow$: bool \rightarrow bool \rightarrow bool $), \mathcal{A}(P L, \neg:$ form \rightarrow form $)$
- $\Delta_{3}=\mathcal{R}$ (PL, bool, form),
$\mathcal{D}(P L, \Rightarrow$ bool \rightarrow bool \rightarrow bool $), \mathcal{A}(P L, \neg$ form \rightarrow form $)$
- $\triangle_{4}=\mathcal{D}(P L$, bool: type $), \mathcal{D}(P L, x:$ type $)$

Example Revisited

$R^{2} v_{1}$

$$
\begin{aligned}
& P L=\{ \\
& \text { bool }: \text { type } \\
& \Rightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \\
& \Leftrightarrow \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

$R^{2} v_{2}$

$$
\begin{aligned}
& P L=\{ \\
& \quad \text { form : type } \\
& \quad \neg: \text { form } \rightarrow \text { form } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad \Leftrightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

- $\Delta_{1}=\mathcal{D}(P L$, bool : type $), \mathcal{A}(P L$, form : type $)$, $\mathcal{A}(P L, \neg$: form \rightarrow form $)$
- $\Delta_{2}=\mathcal{D}(P L$, bool : type $), \mathcal{A}(P L$, form : type $)$,
$\mathcal{D}(P L, \Rightarrow$: bool \rightarrow bool \rightarrow bool $), \mathcal{A}(P L, \neg:$ form \rightarrow form $)$
- $\Delta_{3}=\mathcal{R}$ (PL, bool, form),
$\mathcal{D}(P L, \Rightarrow$: bool \rightarrow bool \rightarrow bool $), \mathcal{A}(P L, \neg$: form \rightarrow form $)$
- $\triangle_{4}=\mathcal{D}(P L$, bool: type $), \mathcal{D}(P L, x:$ type $)$

Semantic Differencing: Formal Properties

- change detection $\left(\mathcal{G}^{\prime}-\mathcal{G}\right)$ identify differences between two theory graphs
- change application $(\mathcal{G} \ll \Delta)$
apply changes to a theory graph

Semantic Differencing: Formal Properties

- change detection $\left(\mathcal{G}^{\prime}-\mathcal{G}\right)$ identify differences between two theory graphs
- change application $(\mathcal{G} \ll \Delta)$ apply changes to a theory graph
- \mathcal{G}-applicability
Δ_{1} applicable to \mathcal{G} iff it can be applied to \mathcal{G}

Semantic Differencing: Formal Properties

- change detection $\left(\mathcal{G}^{\prime}-\mathcal{G}\right)$ identify differences between two theory graphs
- change application $(\mathcal{G} \ll \Delta)$
apply changes to a theory graph
- \mathcal{G}-applicability
Δ_{1} applicable to \mathcal{G} iff it can be applied to \mathcal{G}
- \mathcal{G}-equivalence $\left(\equiv_{\mathcal{G}}\right)$

$$
\Delta_{1} \equiv_{\mathcal{G}} \Delta_{2} \text { iff } \mathcal{G} \ll \Delta_{1}=\mathcal{G} \ll \Delta_{2}
$$

Semantic Differencing: Formal Properties

- change detection $\left(\mathcal{G}^{\prime}-\mathcal{G}\right)$ identify differences between two theory graphs
- change application $(\mathcal{G} \ll \Delta)$
apply changes to a theory graph
- \mathcal{G}-applicability
Δ_{1} applicable to \mathcal{G} iff it can be applied to \mathcal{G}
- \mathcal{G}-equivalence $\left(\equiv_{\mathcal{G}}\right)$

$$
\Delta_{1} \equiv_{\mathcal{G}} \Delta_{2} \text { iff } \mathcal{G} \ll \Delta_{1}=\mathcal{G} \ll \Delta_{2}
$$

- normal diffs

$$
\underline{\text { minimal }} \text { representatives w.r.t. } \equiv_{\mathcal{G}}
$$

Semantic Differencing: Formal Properties

- change detection $\left(\mathcal{G}^{\prime}-\mathcal{G}\right)$ identify differences between two theory graphs
- change application $(\mathcal{G} \ll \Delta)$
apply changes to a theory graph
- \mathcal{G}-applicability
Δ_{1} applicable to \mathcal{G} iff it can be applied to \mathcal{G}
- \mathcal{G}-equivalence $\left(\equiv_{\mathcal{G}}\right)$

$$
\Delta_{1} \equiv_{\mathcal{G}} \Delta_{2} \text { iff } \mathcal{G} \ll \Delta_{1}=\mathcal{G} \ll \Delta_{2}
$$

- normal diffs

$$
\underline{\text { minimal }} \text { representatives w.r.t. } \equiv_{\mathcal{G}}
$$

- inversability of diffs

$$
\mathcal{G} \ll \Delta \ll \Delta^{-1}=\mathcal{G}
$$

Semantic Differencing: Implementation

Change Detection $\left(\mathcal{G}^{\prime}-\mathcal{G}\right)$

- view theory graphs as (nested) URI-indexed tables of declarations.
- new URIs \rightarrow adds, old URIs \rightarrow deletes, preserved URIs \rightarrow (if changed) updates.
- refine the resulting diff by replacing add-delete pairs that represent a rename with the corresponding rename

Semantic Differencing: Implementation

Change Detection ($\mathcal{G}^{\prime}-\mathcal{G}$)

- view theory graphs as (nested) URI-indexed tables of declarations.
- new URIs \rightarrow adds, old URIs \rightarrow deletes, preserved URIs \rightarrow (if changed) updates.
- refine the resulting diff by replacing add-delete pairs that represent a rename with the corresponding rename

Change Application $(\mathcal{G} \ll \Delta)$

- follow the intuitive semantics of each change
- apply (in order) the changes from Δ to \mathcal{G} (if \mathcal{G}-applicable)

Fine-grained dependencies

- in Mmt, validation units are individual components (types and definiens)
- we distinguish two types of dependencies
- syntactic dependencies
- declaration level
- foundation-independent
- occurs-in relation
- semantic dependencies
- component level
- foundation-dependent
- trace lookups during foundational validation

Fine-grained dependencies

- in Mmt, validation units are individual components (types and definiens)
- we distinguish two types of dependencies
- syntactic dependencies
- declaration level
- foundation-independent
- occurs-in relation
- semantic dependencies
- component level
- foundation-dependent
- trace lookups during foundational validation
- dependencies are indexed by MMT and are available at any time

Example Revisited - Again

Rev_{1}

$$
\begin{aligned}
& P L=\{ \\
& \quad \text { bool : type } \\
& \quad \Rightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \wedge: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad \Leftrightarrow: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \quad=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x)
\end{aligned}
$$

Impact Propagation

- key idea: propagation as diff enrichment process
- impact propagation of a diff Δ is another diff $\bar{\Delta}$ that :
- marks impacted components by surrounding with OpenMath error terms
- automatically propagates renames

updates in-term references

Impact Propagation

- key idea: propagation as diff enrichment process
- impact propagation of a diff Δ is another diff $\bar{\Delta}$ that :
- marks impacted components by surrounding with OpenMath error terms
- automatically propagates renames

updates in-term references

Theorem

After all error terms are replaced with valid terms in $\mathcal{G} \ll \Delta \ll \bar{\Delta}$, the resulting theory graph is valid.

Workflow Example (relative to a graph \mathcal{G})

Example Revisited - Yet Again

$$
\begin{aligned}
& \bar{\Delta}=\mathcal{U}(P L, \Leftrightarrow, \text { def }, \lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x), \lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x) \\
& \mathcal{U}(P L, \wedge, \text { tp }, \text { bool } \rightarrow \text { bool } \rightarrow \text { bool, form } \rightarrow \text { form } \rightarrow \text { form }) \\
& \mathcal{U}(P L, \Leftrightarrow, \text { tp, bool } \rightarrow \text { bool } \rightarrow \text { bool, form } \rightarrow \text { form } \rightarrow \text { form })
\end{aligned}
$$

$$
P L=\{
$$

form : type

$$
\neg: \text { form } \rightarrow \text { form }
$$

$$
\wedge: \text { form } \rightarrow \text { form } \rightarrow \text { form }
$$

$$
\Leftrightarrow: \text { form } \rightarrow \text { form } \rightarrow \text { form }
$$

$$
=\lambda x \cdot \lambda y \cdot(x \Rightarrow y) \wedge(y \Rightarrow x))
$$

\}

Evaluation : LATIN

Dependencies	Components (\%)
$0-5$	$1373(79)$
$6-10$	$271(15.6)$
$11-15$	$81(4.7)$
$16-26$	$13(0.7)$

Impacts	Components (\%)
$0-5$	$1504(86.5)$
$6-10$	$101(5.8)$
$11-25$	$76(4.4)$
$26-50$	$31(1.8)$
$50-449$	$26(1.5)$

- generally low number of impacts
- however, high variance of impacts
creates need for detection tools
- on average, types have 3 times more impacts than definiens validates our fine-grained approach

Observations

- at all steps renames (\mathcal{R}) require special treatment
- good at the user level more change types means more change semantics
- bad at the system level
more change types means more complex formalization

Observations

- at all steps renames (\mathcal{R}) require special treatment
- good at the user level more change types means more change semantics
- bad at the system level
more change types means more complex formalization
- underlying problem: conflicting requirements for the change language simple vs expressive

Observations

- at all steps renames (\mathcal{R}) require special treatment
- good at the user level more change types means more change semantics
- bad at the system level
more change types means more complex formalization
- underlying problem: conflicting requirements for the change language simple vs expressive
- solution : extensibility
- regular and minimal core language
- enlarge expressivity through refinements rename add, delete, update

Observations

- at all steps renames (\mathcal{R}) require special treatment
- good at the user level more change types means more change semantics
- bad at the system level
more change types means more complex formalization
- underlying problem: conflicting requirements for the change language simple vs expressive
- solution : extensibility
- regular and minimal core language
add, delete, update
- enlarge expressivity through refinements rename, merge

Observations

- at all steps renames (\mathcal{R}) require special treatment
- good at the user level more change types means more change semantics
- bad at the system level
more change types means more complex formalization
- underlying problem: conflicting requirements for the change language simple vs expressive
- solution : extensibility
- regular and minimal core language
add, delete, update
- enlarge expressivity through refinements rename, merge, split

Observations

- at all steps renames (\mathcal{R}) require special treatment
- good at the user level more change types means more change semantics
- bad at the system level
more change types means more complex formalization
- underlying problem: conflicting requirements for the change language simple vs expressive
- solution : extensibility
- regular and minimal core language
add, delete, update
- enlarge expressivity through refinements rename, merge, split, alpha-renaming

Observations

- at all steps renames (\mathcal{R}) require special treatment
- good at the user level more change types means more change semantics
- bad at the system level
more change types means more complex formalization
- underlying problem: conflicting requirements for the change language simple vs expressive
- solution : extensibility
- regular and minimal core language
add, delete, update
- enlarge expressivity through refinements rename, merge, split, alpha-renaming, ...

Workflow Example (relative to a graph \mathcal{G}) - Again

Workflow Example (relative to a graph \mathcal{G}) - Better

Conclusion and Future Work

- Mmт MoC : a change management solution for Mmт
- formal definition, theorems
- supports transactions and roll-backs
- uses fine-grained semantic dependencies
- implemented in the Mmт API
- future work (currently in progress)
- refinement (add flexibility to the change language) towards an Ммт theory of refactoring
- integration with user interfaces

