Searching the Space of Mathematical Knowledge

Michael Kohlhase & Mihnea Iancu

http://kwarc.info/kohlhase Center for Advanced Systems Engineering Jacobs University Bremen, Germany

8. July 2012, Math Information Retrieval Symposium

Classical Math Search Engines

Instead of a Demo: Searching for Signal Power

int(λx.e^n*r)	QMath:en	QMath:en 💌	Variables				
			Variable	Generic	Any#	Function	
	ſ		r	~			
	e ⁿ rdx		n	~			
J			x	~			
			Arithmetic				
			Transcendental functions				
			Calculus				
			$\partial_x x$	$\partial^n x$	$\partial_{x,y}(x)$)	
			∫xdx	$\int_{a}^{b} x dx$	[a, b]	(a, b]	
			$\lim_{x \to x_0} x$	00			
			∇f	$\nabla^2 v_{\rm f}$	curlvf	divv _f	
			Sets				
			Logic and relations				
F					Functions		

Math Mah Caase

Examples | Help | API | About | Contact

Search

MIR 2012

3

Instead of a Demo: Search Results

Other integrals (5 formulas) (Source)

Other integrals (5 formulas)

Matched term:

$$\int \frac{e^{3z/4}}{(-2+e^{3z/4})\sqrt{-2+e^{3z/4}+e^{3z/2}}} dz = \frac{2}{3} \left(\log \left(-2+e^{3z/4}\right) - \log \left(4\sqrt{-2+e^{3z/4}+e^{3z/2}}+5e^{3z/4}-2\right) \right)$$

Rank: 100%

XML Source

Used substitution:

$$\mathbf{n} \to 3z 4^{-1}$$

$$\mathbf{r} \to \left(\left((-2) + \boldsymbol{e}^{3z 4^{-1}} \right) \left((-2) + \boldsymbol{e}^{3z 4^{-1}} + \boldsymbol{e}^{3z 2^{-1}} \right)^{1/2} \right)^{-1}$$

$$\mathbf{x} \to z$$

Instead of a Demo: LATEX-based Search on the arXiv

to horizontal directions Author Daphe Stam «d.m.stam@sron.nl>

Behavior of the reflection function of a plane-parallel medium for directions of incidence and reflection tending to horizontal directions

 $\lim_{\mu,\mu_0\to 0} I_1^{t}(\mu,\mu_0,\phi-\phi_0) = \frac{aF_0}{4(c+1)},$

 $\lim_{\mu,\mu_0\to 0} I_1^t(\mu,\mu_0,\phi-\phi_0)$

MIR 2012

Instead of a Demo: Appliccable Theorem Search in Mizar

Searching the Math Knowledge Space

- Classical Setup: they all work more or less the same:
 - crawl the resources
 - index the search-relevant information
 - process user queries
 - rank/process the hits
- Question: Is this enough for the working Mathematician?
- Answer: depends on what you want.
 - Yes, if we restrict ourselves to what is explicitly written in books, papers, etc.
 - No, if we are looking for "Mathematical Knowledge"! (and I claim we should be)
- **Observation 1** Mathematical knowledge is induced by combinations of explicitly represented facts. (that's why we usually ask humans)
- **Example 2** Combine mathematical facts (no, we don't need theorem proving!)
 - **Theorem 3.1**: Idempotent monoids are Abelian. (from course Algebra I)
 - Lemma 2: (S, \sharp) is an associative, untial, idempotent magma. (you just found out) (Find it as an instance of Theorem 3.1)
 - Search for x♯y = y♯x

(the Web or a corpus)

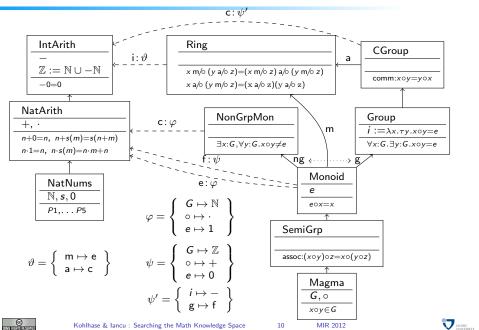
(needs work!)

(formulae, words, structures, ...) (via tf/idf, unification, ...)

Modular Representation of Mathematics

Modular Representation of Math (Theory Graph)

- Idea: Follow mathematical practice of generalizing and framing
 - framing: If we can view an object a as an instance of concept B, we can inherit all of B properties (almost for free.)
 - state all assertions about properties as general as possible (to maximize inheritance)
 - examples and applications are just special framings.
- Modern expositions of Mathematics follow this rule (radically e.g. in Bourbaki)
- formalized in the theory graph paradigm
 - theories as collections of symbol declarations and axioms (model assumptions)
 - theory morphisms as mappings that translate axioms into theorems
- Example 3 (MMT: Modular Mathematical Theories) MMT is a foundation-indepent theory graph formalism with advanced theory morphisms.


Problem: With a proliferation of abstract (tiny) theories readability and accessibility suffers (one reason why the Bourbaki books fell out of favor)

(little/tiny theory doctrine)

Modular Representation of Math (MMT Example)

The MMT Module System

- Central notion: theory graph with theory nodes and theory morphisms as edges
- Definition 4 In MMT, a theory is a sequence of constant declarations optionally with type declarations and definitions
- MMT employs the Curry/Howard isomorphism and treats
 - axioms/conjectures as typed symbol declarations
 - inference rules as function types
 - theorems as definitions
- Definition 5 MMT had two kinds of theory morphisms
 - structures instantiate theories in a new context (also called: definitional link, import) they import of theory S into theory T induces theory morphism $S \to T$
 - views translate between existing theories (also called: postulated link, theorem link) views transport theorems from source to target (framing)
- together, imports and views allow a very high degree of re-use
- Definition 6 We call a statement t induced in a theory T, iff there is
 - a path of theory morphisms from a theory S to T with (joint) assignment σ ,
 - such that $t = \sigma(s)$ for some statement s in S.
- In MMT, all induced statements have a canonical name, the MMT URI.

(propositions-as-types)

(proof terms for conjectures)

(proof transformers)

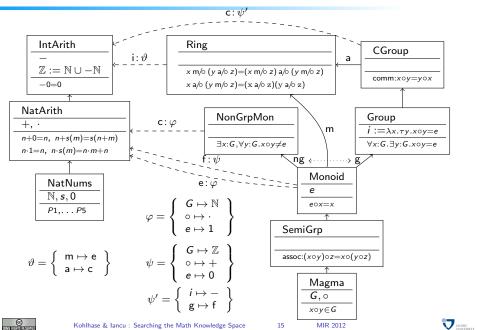
Searching for Induced statements

- Simple Idea: We have all the necessary components: MMT and MathWebSearch
- Definition 7 The bsearch system is an integration of MathWebSearch and MMT that
 - computes the induced formulae of a modular mathematical library via MMT

(aka. flattening)

- indexes induced formulae by their MMT URIs in MathWebSearch
- uses MathWebSearch for unification-based querying (hits are MMT URIs)
- uses the MMT to present MMT URI (compute the actual formula)
- generates explanations from the MMT URI of hits.
- Implemented by Mihnea lancu in ca. 10 days (MMT harvester pre-existed)
 - almost all work was spent on improvements of MMT flattening
 - MathWebSearch just worked

(web service helpful)



- Recall: bsearch (MathWebSearch really) returns a MMT URI as a hit.
- Question: How to present that to the user? (for his/her greatest benefit)
- Fortunately: MMT system can compute induced statements (the hits)
- Problem: Hit statement may look considerably different from the induced statement
- Solution: Template-based generation of NL explanations from MMT URIs. MMT knows the necessary information from the components of the MMT URI.

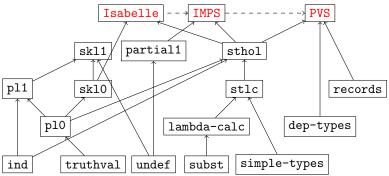
Modular Representation of Math (MMT Example)

Example: Explaining a MMT URI

- Example 8 bearch search result *u*?IntArith?c/g/assoc for query (x + y) + z = R.
 - localize the result in the theory u?IntArithf with

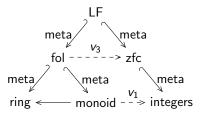
Induced statement $\forall x, y, z : \mathbb{Z}.(x + y) + z = x + (y + z)$ found in http://cds.omdoc.org/cds/elal?IntArith (subst, justification).

- Justification: from MMT info about morphism c (source, target, assignment) <u>IntArith</u> is a <u>CGroup</u> if we interpret \circ as + and G as \mathbb{Z} .
- skip over g, since its assignment is trivial and generate <u>CGroups are SemiGrps by construction</u>
- ground the explanation by


In SemiGrps we have the axiom assoc : $\forall x, y, z : G.(x \circ y) \circ z = x \circ (y \circ z)$

The LATIN Logic Atlas

- **Definition 9** The LATIN project (Logic <u>At</u>las and <u>In</u>tegrator) develops a logic atlas, its home page is at http://latin.omdoc.org.
- Idea: Provide a standardized, well-documented set of theories for logical languages, logic morphisms as theory morphisms.


- Technically: Use MMT as a representation language logics-as-theories
- Integrate logic-based software systems via views.

17

- Logics and Foundations as Theories:
- Logics and foundations represented as theories
- Meta-relation between theories
- Models represented as theory morphisms
- e.g. v₁ interprets monoid in integers using meta-morphism v₃
- The LATIN atlas in numbers: it currently contains
 - 449 theories with 2310 symbol declarations
 - and 1072 direct imports (including metas)
 - 382 views between theories.
 - Size: 123.9 MB in native OMDoc format

(tiny theories approach)

(avg. = 5.14 declarations/theory)(avg = 2.39 imports/theory)

bsearch on the LATIN Logic Atlas

• Flattening the LATIN Atlas (once):

type	modular	flat	factor
declarations	2310	58847	25.4
library size	23.9 MB	1.8 GB	14.8
math sub-library	2.3 MB	79 MB	34.3
MathWebSearch harvests	25.2 MB	539.0 MB	21.3

simple bsearch frontend at http://cds.omdoc.org:8181

- From searching documents to searching knowledge spaces!
- bsearch implemented from existing components
 - MMT for modular representations of mathematical knowledge
 - MMT URIs name induced statements
 - flattening to compute all induced statements
 - generate human-oriented explanations of induction paths
- Prototypical implementation for the LATIN logic atlas
- Future work: we have only just begun (most work in MMT though)
 - Flattening away other language features, e.g. patterns
 - Avoiding duplication from structures.
 - Integrating graph structure constraints into MathWebSearch
 - Extending MMT (and flattening) to informal Math!

 $(\rightsquigarrow F. Horozal)$

(redo Bourbaki)