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Mathematical background

Chain Complexes

Definition

A chain complex C∗ is a pair of sequences C∗ = (Cq , dq)q∈Z where:

For every q ∈ Z, the component Cq is a Z2-module, the chain group of degree q

For every q ∈ Z, the component dq is a module morphism dq : Cq → Cq−1, the
differential map

For every q ∈ Z, the composition dqdq+1 is null: dqdq+1 = 0

Definition

If C∗ = (Cq , dq)q∈Z is a chain complex:

The image Bq = im dq+1 ⊆ Cq is the (sub)module of q-boundaries

The kernel Zq = ker dq ⊆ Cq is the (sub)module of q-cycles

Definition

Let C∗ = (Cq , dq)q∈Z be a chain complex. For each degree n ∈ Z, the n-homology
module of C∗ is defined as the quotient module

Hn(C∗) =
Zn

Bn
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Mathematical background Effective Homology Theory

Reduction

Definition

A reduction ρ between two chain complexes C∗ y D∗ (denoted by ρ : C∗⇒⇒D∗) is a
tern ρ = (f , g , h)

C∗

h

�� f
++
D∗

g

kk

satisfying the following relations:

1) fg = idD∗ ;

2) dC h + hdC = idC∗ − gf ;

3) fh = 0; hg = 0; hh = 0.

Theorem

If C∗⇒⇒D∗, then C∗ ∼= D∗ ⊕ A∗, with A∗ acyclic, what implies that
Hn(C∗) ∼= Hn(D∗) for all n.
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Mathematical background Discrete Morse Theory

Discrete Morse Theory

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic
Topology, 2010. http://arxiv.org/abs/1005.5685v1.

Given a chain complex C∗ and a dvf , V over C∗

C∗⇒⇒C c
∗

generators of C c
∗ are critical cells of C∗

0← Z16
2

d1←− Z32
2

d2←− Z16
2 ← 0

↓

0← Z2
d̂1←− Z2

d̂2←− 0← 0
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Mathematical background Discrete Morse Theory

Discrete Vector Fields

Definition

Let C∗ = (Cp , dp)p∈Z a free chain complex with distinguished Z2-basis βp ⊂ Cp . A

discrete vector field V on C∗ is a collection of pairs V = {(σi ; τi )}i∈I satisfying the

conditions:

Every σi is some element of βp , in which case τi ∈ βp+1. The degree p depends
on i and in general is not constant.

Every component σi is a regular face of the corresponding τi .

Each generator (cell) of C∗ appears at most once in V .

Definition

A V -path of degree p and length m is a sequence π = ((σik , τik ))0≤k<m satisfying:

Every pair (σik , τik ) is a component of V and τik is a p-cell.

For every 0 < k < m, the component σik is a face of τik−1
, non necessarily

regular, but different from σik−1
.
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Mathematical background Discrete Morse Theory

Discrete Vector Fields

Definition

A discrete vector field V is admissible if for every p ∈ Z, a function λp : βp → N is
provided satisfying the following property: every V -path starting from σ ∈ βp has a
length bounded by λp(σ).

Definition

A cell σ which does not appear in a discrete vector field V is called a critical cell.

Theorem

Let C∗ = (Cp , dp)p∈Z be a free chain complex and V = {(σi ; τi )}i∈I be an admissible
discrete vector field on C∗. Then the vector field V defines a canonical reduction
ρ = (f , g , h) : (Cp , dp)⇒⇒ (C c

p , d
′
p) where C c

p = Z2[βc
p ] is the free Z2-module generated

by the critical p-cells.
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Mathematical background Discrete Morse Theory

Vector fields and integer matrices

Differential maps of a Chain Complex can be represented as matrices

. . .← Zm
2

M←− Zn
2 ← . . .

Definition

An admissible vector field V for M is nothing but a set of integer pairs {(ai , bi )}
satisfying these conditions:

1 1 ≤ ai ≤ m and 1 ≤ bi ≤ n

2 The entry M[ai , bi ] of the matrix is 1

3 The indices ai (resp. bi ) are pairwise different

4 Non existence of loops
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An abstract method

Coq/SSReflect

Coq:

An Interactive Proof Assistant
Based on Calculus of Inductive Constructions
Interesting feature: program extraction from a constructive
proof

SSReflect:

Extension of Coq
Developed while formalizing the Four Color Theorem by G.
Gonthier
Currently, it is used in the formalization of Feit-Thompson
Theorem
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An abstract method

Admissible discrete vector fields in SSReflect

Definition

An admissible discrete vector field V for M is nothing but a set of integer pairs
{(ai , bi )} satisfying these conditions:

1 1 ≤ ai ≤ m and 1 ≤ bi ≤ n

2 The entry M[ai , bi ] of the matrix is 1

3 The indices ai (resp. bi ) are pairwise different

4 Non existence of loops

Definition admissible_dvf (M: ’M[Z2]_(m,n))

(V: seq (’I_m * ’I_n)) (ords : simpl_rel ’I_m) :=

all [pred p | M p.1 p.2 == 1] V &&

uniq (map (@fst _ _) V) && uniq (map (@snd _ _) V) &&

all [pred i | ~~ (connect ords i i)] (map (@fst _ _) V).
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An abstract method

The abstract algorithm

Fixpoint genDvfOrders M V (ords : simpl_rel _) k :=

if k is l.+1 then

let P := [pred ij | admissible (ij::V) M

(relU ords (gen_orders M ij.1 ij.2))] in

if pick P is Some (i,j)

then genDvfOrders M ((i,j)::V)

(relU ords (gen_orders M i j)) l

else (V, ords)

else (V, ords).

Definition gen_adm_dvf M :=

genDvfOrders M [::] [rel x y | false] (minn m n).

Lemma admissible_gen_adm_dvf m n (M : ’M[Z2]_(m,n)) :

let (vf,ords) := gen_adm_dvf M in admissible vf M ords.

Problem

It is not an executable algorithm
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It is not an executable algorithm
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An effective method Methodology

Romero-Sergeraert’s Algorithm

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic
Topology, 2010. http://arxiv.org/abs/1005.5685v1.

Algorithm

Input: A matrix M
Output: An admissible discrete vector field for M

Algorithm

Input: A chain complex C∗ and an admissible discrete vector field of C∗
Output: A reduced chain complex Ĉ∗
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An effective method Methodology

From computation to verification through testing

Haskell as programming language

QuickCheck to test the programs

Coq/SSReflect to verify the correctness of the programs
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An effective method Methodology

Haskell

Algorithm (gen adm dvf )

Input: A matrix M
Output: An admissible discrete vector field for M

Algorithm (reduced cc)

Input: A chain complex C∗
Output: A reduced chain complex Ĉ∗

> gen_adm_dvf [[1,0,1,1],[0,0,1,0],[1,1,0,1]]

[(0,0),(1,2),(2,1)]
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An effective method Methodology

QuickCheck

A specification of the properties which our program must verify

Testing them

Towards verification
Detect bugs

> quickCheck M -> admissible (gen_adm_dvf M)

+ + + OK, passed 100 tests
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An effective method Methodology

Coq/SSReflect

SSReflect Theorem:

Theorem gen_adm_dvf_is_admissible (M : seq (seq Z2)) :

admissible (gen_adm_dvf M).

SSReflect Theorem:

Theorem is_reduction (C : chaincomplex) : reduction C (reduced_cc C).

SSReflect Theorem:

Theorem reduction_preserves_betti (C D : chaincomplex)

(rho : reduction C D) : Betti C = Betti D.
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An effective method Experimental results

Experimental results

500 randomly generated matrices

Initial size of the matrices: 100× 300

Time: 12 seconds

After reduction: 5× 50

Time: milliseconds
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Application Counting synapses

Counting Synapses

Synapses are the points of connection between neurons

Relevance: Computational capabilities of the brain

Procedures to modify the synaptic density may be an
important asset in the treatment of neurological diseases

An automated and reliable method is necessary
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Application Counting synapses

Results with biomedical images

Without reduction procedure:

Coq is not able to compute homology of this kind of images

After reduction procedure:

Coq computes in just 25 seconds
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Conclusions and Further work

Conclusions:

Method to reduce big images preserving homology
Formalization of admissible discrete vector fields on Coq
Remarkable reductions in different benchmarks

Further work:

Matrices with coefficients over Z
Integration between Coq and ACL2
Application of homological methods to biomedical problems
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Thank you for your attention Questions?

Verifying an algorithm computing Discrete Vector
Fields for digital imaging

J. Heras, M. Poza, and J. Rubio

Department of Mathematics and Computer Science, University of La Rioja

Calculemus 2012
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