Verifying an algorithm computing Discrete Vector Fields for digital imaging*

J. Heras, M. Poza, and J. Rubio

Department of Mathematics and Computer Science, University of La Rioja
Calculemus 2012

[^0]
Algebraic Topology and Digital Images

Digital Image

Algebraic Topology and Digital Images

Simplicial complex

Algebraic Topology and Digital Images

Simplicial complex

$$
\begin{aligned}
& C_{0}=\mathbb{Z}_{2}[\text { vertices }] \\
& C_{1}=\mathbb{Z}_{2}[\text { edges }] \\
& C_{2}=\mathbb{Z}_{2}[\text { triangles }]
\end{aligned}
$$

Algebraic Topology and Digital Images

Simplicial complex
Chain complex

Algebraic Topology and Digital Images

Digital Image

Simplicial complex

Homology groups

$$
\begin{aligned}
& H_{0}=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \\
& H_{1}=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
\end{aligned}
$$

Reduced
Chain Complex
$C_{0}=\mathbb{Z}_{2}[$ vertices $]$
$C_{1}=\mathbb{Z}_{2}$ [edges]
$C_{2}=\mathbb{Z}_{2}$ [triangles]
Chain complex

Algebraic Topology and Digital Images

Simplicial complex

Homology groups

$$
\begin{aligned}
& H_{0}=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \\
& H_{1}=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
\end{aligned}
$$

Reduced

Chain Complex
$C_{0}=\mathbb{Z}_{2}[$ vertices $]$
$C_{1}=\mathbb{Z}_{2}$ [edges]
$C_{2}=\mathbb{Z}_{2}$ [triangles]
Chain complex

Goal

- Application:
- Analysis of biomedical images

Goal

- Application:
- Analysis of biomedical images
- Requirements:
- Efficiency
- Reliability

Goal

- Application:
- Analysis of biomedical images
- Requirements:
- Efficiency
- Reliability

Goal

A formally verified efficient method to compute homology from digital images

Goal

Goal

J. Heras, M. Dénès, G. Mata, A. Mörtberg, M. Poza, and V. Siles. Towards a certified computation of homology groups. In proceedings 4th International Workshop on Computational Topology in Image Context. Lecture Notes in Computer Science, 7309, pages 49-57, 2012.

Goal

Bottleneck

Compute Homology from Chain Complexes

Goal

Goal of this work

Formalization in Coq/SSReflect of a procedure to reduce the size of Chain Complexes but preserving homology

Table of Contents

(1) Mathematical background
(2) An abstract method
(3) An effective method

4 Application
(5) Conclusions and Further work

Table of Contents

(1) Mathematical background

(3) An effective method

4 Application
(5) Conclusions and Further work

Chain Complexes

Definition

A chain complex C_{*} is a pair of sequences $C_{*}=\left(C_{q}, d_{q}\right)_{q \in \mathbb{Z}}$ where:

- For every $q \in \mathbb{Z}$, the component C_{q} is a \mathbb{Z}_{2}-module, the chain group of degree q
- For every $q \in \mathbb{Z}$, the component d_{q} is a module morphism $d_{q}: C_{q} \rightarrow C_{q-1}$, the differential map
- For every $q \in \mathbb{Z}$, the composition $d_{q} d_{q+1}$ is null: $d_{q} d_{q+1}=0$

Chain Complexes

Definition

A chain complex C_{*} is a pair of sequences $C_{*}=\left(C_{q}, d_{q}\right)_{q \in \mathbb{Z}}$ where:

- For every $q \in \mathbb{Z}$, the component C_{q} is a \mathbb{Z}_{2}-module, the chain group of degree q
- For every $q \in \mathbb{Z}$, the component d_{q} is a module morphism $d_{q}: C_{q} \rightarrow C_{q-1}$, the differential map
- For every $q \in \mathbb{Z}$, the composition $d_{q} d_{q+1}$ is null: $d_{q} d_{q+1}=0$

Definition

If $C_{*}=\left(C_{q}, d_{q}\right)_{q \in \mathbb{Z}}$ is a chain complex:

- The image $B_{q}=\operatorname{im} d_{q+1} \subseteq C_{q}$ is the (sub)module of q-boundaries
- The kernel $Z_{q}=$ ker $d_{q} \subseteq C_{q}$ is the (sub)module of q-cycles

Chain Complexes

Definition

A chain complex C_{*} is a pair of sequences $C_{*}=\left(C_{q}, d_{q}\right)_{q \in \mathbb{Z}}$ where:

- For every $q \in \mathbb{Z}$, the component C_{q} is a \mathbb{Z}_{2}-module, the chain group of degree q
- For every $q \in \mathbb{Z}$, the component d_{q} is a module morphism $d_{q}: C_{q} \rightarrow C_{q-1}$, the differential map
- For every $q \in \mathbb{Z}$, the composition $d_{q} d_{q+1}$ is null: $d_{q} d_{q+1}=0$

Definition

If $C_{*}=\left(C_{q}, d_{q}\right)_{q \in \mathbb{Z}}$ is a chain complex:

- The image $B_{q}=\operatorname{im} d_{q+1} \subseteq C_{q}$ is the (sub)module of q-boundaries
- The kernel $Z_{q}=$ ker $d_{q} \subseteq C_{q}$ is the (sub)module of q-cycles

Definition

Let $C_{*}=\left(C_{q}, d_{q}\right)_{q \in \mathbb{Z}}$ be a chain complex. For each degree $n \in \mathbb{Z}$, the n-homology module of C_{*} is defined as the quotient module

$$
H_{n}\left(C_{*}\right)=\frac{Z_{n}}{B_{n}}
$$

Reduction

Definition

A reduction ρ between two chain complexes C_{*} y D_{*} (denoted by $\rho: C_{*} \Rightarrow D_{*}$) is a tern $\rho=(f, g, h)$

satisfying the following relations:

1) $f g=i d_{D_{*}}$;
2) $d_{C} h+h d_{C}=i d_{C_{*}}-g f$;
3) $f h=0 ; \quad h g=0 ; \quad h h=0$.

Theorem

If $C_{*} \Rightarrow D_{*}$, then $C_{*} \cong D_{*} \oplus A_{*}$, with A_{*} acyclic, what implies that $H_{n}\left(C_{*}\right) \cong H_{n}\left(D_{*}\right)$ for all n.

Discrete Morse Theory

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

Discrete Morse Theory

B
A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

Discrete Morse Theory

a
A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

Discrete Morse Theory

E
A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

Discrete Morse Theory

B
A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

Discrete Morse Theory

B
A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

Discrete Morse Theory

E
A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

Discrete Morse Theory

E
A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

- Given a chain complex C_{*} and a $d v f, V$ over C_{*}
- $C_{*} \Rightarrow C_{*}^{c}$
- generators of C_{*}^{c} are critical cells of C_{*}

Discrete Morse Theory

E
A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

$\rightarrow 0$

- Given a chain complex C_{*} and a $d v f, V$ over C_{*}
- $C_{*} \Rightarrow C_{*}^{c}$
- generators of C_{*}^{c} are critical cells of C_{*}

$$
\begin{gathered}
0 \leftarrow \mathbb{Z}_{2}^{16} \stackrel{d_{1}}{\leftarrow} \mathbb{Z}_{2}^{32} \stackrel{d_{2}}{\leftarrow} \mathbb{Z}_{2}^{16} \leftarrow 0 \\
0 \leftarrow \mathbb{Z}_{2} \stackrel{\hat{d}_{1}}{\leftarrow} \mathbb{Z}_{2} \stackrel{\widehat{d}_{2}}{\leftarrow} 0 \leftarrow 0
\end{gathered}
$$

Discrete Vector Fields

Definition

Let $C_{*}=\left(C_{p}, d_{p}\right)_{p \in \mathbb{Z}}$ a free chain complex with distinguished \mathbb{Z}_{2}-basis $\beta_{p} \subset C_{p}$. A discrete vector field V on C_{*} is a collection of pairs $V=\left\{\left(\sigma_{i} ; \tau_{i}\right)\right\}_{i \in I}$ satisfying the conditions:

- Every σ_{i} is some element of β_{p}, in which case $\tau_{i} \in \beta_{p+1}$. The degree p depends on i and in general is not constant.
- Every component σ_{i} is a regular face of the corresponding τ_{i}.
- Each generator (cell) of C_{*} appears at most once in V.

Discrete Vector Fields

Definition

Let $C_{*}=\left(C_{p}, d_{p}\right)_{p \in \mathbb{Z}}$ a free chain complex with distinguished \mathbb{Z}_{2}-basis $\beta_{p} \subset C_{p}$. A discrete vector field V on C_{*} is a collection of pairs $V=\left\{\left(\sigma_{i} ; \tau_{i}\right)\right\}_{i \in I}$ satisfying the conditions:

- Every σ_{i} is some element of β_{p}, in which case $\tau_{i} \in \beta_{p+1}$. The degree p depends on i and in general is not constant.
- Every component σ_{i} is a regular face of the corresponding τ_{i}.
- Each generator (cell) of C_{*} appears at most once in V.

Definition

A V-path of degree p and length m is a sequence $\pi=\left(\left(\sigma_{i_{k}}, \tau_{i_{k}}\right)\right)_{0 \leq k<m}$ satisfying:

- Every pair $\left(\sigma_{i_{k}}, \tau_{i_{k}}\right)$ is a component of V and $\tau_{i_{k}}$ is a p-cell.
- For every $0<k<m$, the component $\sigma_{i_{k}}$ is a face of $\tau_{i_{k-1}}$, non necessarily regular, but different from $\sigma_{i_{k-1}}$.

Discrete Vector Fields

Definition

A discrete vector field V is admissible if for every $p \in \mathbb{Z}$, a function $\lambda_{p}: \beta_{p} \rightarrow \mathbb{N}$ is provided satisfying the following property: every V-path starting from $\sigma \in \beta_{p}$ has a length bounded by $\lambda_{p}(\sigma)$.

Discrete Vector Fields

Definition

A discrete vector field V is admissible if for every $p \in \mathbb{Z}$, a function $\lambda_{p}: \beta_{p} \rightarrow \mathbb{N}$ is provided satisfying the following property: every V-path starting from $\sigma \in \beta_{p}$ has a length bounded by $\lambda_{p}(\sigma)$.

Definition

A cell σ which does not appear in a discrete vector field V is called a critical cell.

Discrete Vector Fields

Definition

A discrete vector field V is admissible if for every $p \in \mathbb{Z}$, a function $\lambda_{p}: \beta_{p} \rightarrow \mathbb{N}$ is provided satisfying the following property: every V-path starting from $\sigma \in \beta_{p}$ has a length bounded by $\lambda_{p}(\sigma)$.

Definition

A cell σ which does not appear in a discrete vector field V is called a critical cell.

Theorem

Let $C_{*}=\left(C_{p}, d_{p}\right)_{p \in \mathbb{Z}}$ be a free chain complex and $V=\left\{\left(\sigma_{i} ; \tau_{i}\right)\right\}_{i \in I}$ be an admissible discrete vector field on C_{*}. Then the vector field V defines a canonical reduction $\rho=(f, g, h):\left(C_{p}, d_{p}\right) \Rightarrow\left(C_{p}^{c}, d_{p}^{\prime}\right)$ where $C_{p}^{c}=\mathbb{Z}_{2}\left[\beta_{p}^{c}\right]$ is the free \mathbb{Z}_{2}-module generated by the critical p-cells.

Example: an admissible discrete vector field

Example: an admissible discrete vector field

Example: an admissible discrete vector field

Example: an admissible discrete vector field

Dvf \checkmark

Example: an admissible discrete vector field

Dvf \checkmark
Admissible \times

Dvf \checkmark
Admissible \checkmark

Vector fields and integer matrices

Differential maps of a Chain Complex can be represented as matrices

Vector fields and integer matrices

Differential maps of a Chain Complex can be represented as matrices

Definition

An admissible vector field V for M is nothing but a set of integer pairs $\left\{\left(a_{i}, b_{i}\right)\right\}$ satisfying these conditions:
(1) $1 \leq a_{i} \leq m$ and $1 \leq b_{i} \leq n$
(2) The entry $M\left[a_{i}, b_{i}\right]$ of the matrix is 1
(3) The indices a_{i} (resp. b_{i}) are pairwise different
(4) Non existence of loops

Vector fields and integer matrices

Differential maps of a Chain Complex can be represented as matrices

Definition

An admissible vector field V for M is nothing but a set of integer pairs $\left\{\left(a_{i}, b_{i}\right)\right\}$ satisfying these conditions:
(1) $1 \leq a_{i} \leq m$ and $1 \leq b_{i} \leq n$
(2) The entry $M\left[a_{i}, b_{i}\right]$ of the matrix is 1
(3) The indices a_{i} (resp. b_{i}) are pairwise different
(4) Non existence of loops

Vector fields and integer matrices

Differential maps of a Chain Complex can be represented as matrices

Definition

An admissible vector field V for M is nothing but a set of integer pairs $\left\{\left(a_{i}, b_{i}\right)\right\}$ satisfying these conditions:
(1) $1 \leq a_{i} \leq m$ and $1 \leq b_{i} \leq n$
(2) The entry $M\left[a_{i}, b_{i}\right]$ of the matrix is 1
(3) The indices a_{i} (resp. b_{i}) are pairwise different
(4) Non existence of loops

Table of Contents

(2) An abstract method
(3) An effective method

4 Application
(5) Conclusions and Further work

Coq/SSReflect

- Coq:

- An Interactive Proof Assistant
- Based on Calculus of Inductive Constructions
- Interesting feature: program extraction from a constructive proof

Coq/SSReflect

- Coq:
- An Interactive Proof Assistant
- Based on Calculus of Inductive Constructions
- Interesting feature: program extraction from a constructive proof
- SSReflect:
- Extension of Coq
- Developed while formalizing the Four Color Theorem by G. Gonthier
- Currently, it is used in the formalization of Feit-Thompson Theorem

Admissible discrete vector fields in SSReflect

Definition

An admissible discrete vector field V for M is nothing but a set of integer pairs $\left\{\left(a_{i}, b_{i}\right)\right\}$ satisfying these conditions:
(1) $1 \leq a_{i} \leq m$ and $1 \leq b_{i} \leq n$
(2) The entry $M\left[a_{i}, b_{i}\right]$ of the matrix is 1
(3) The indices a_{i} (resp. b_{i}) are pairwise different
4. Non existence of loops

Definition admissible_dvf (M: 'M[Z2]_(m,n))
(V: seq ('I_m * 'I_n)) (ords : simpl_rel 'I_m) :=
all [pred p | M p. 1 p. $2==1]$ V \&\&
uniq (map (@fst _ _) V) \&\& uniq (map (@snd _ _) V) \&\& all [pred i | ~~ (connect ords i i)] (map (@fst _ _) V).

The abstract algorithm

```
Fixpoint genDvfOrders M V (ords : simpl_rel _) k :=
    if \(k\) is l.+1 then
        let \(P\) := [pred ij | admissible (ij::V) M
                                    (relU ords (gen_orders M ij.1 ij.2))] in
        if pick P is Some (i,j)
            then genDvfOrders M ( \(\mathrm{i}, \mathrm{j}\) ): : V)
                                    (relU ords (gen_orders M i j)) l
        else (V, ords)
    else (V, ords).
Definition gen_adm_dvf M :=
    genDvfOrders M [::] [rel x y | false] (minn m n).
```


The abstract algorithm

Fixpoint genDvfOrders M V (ords : simpl_rel _) k := if k is l.+1 then
let $P:=$ [pred ij | admissible (ij::V) M (relU ords (gen_orders M ij.1 ij.2))] in
if pick P is Some (i,j)
then genDvfOrders M ($(i, j):: V)$
(relU ords (gen_orders M i j)) l
else (V, ords) else (V, ords).

Definition gen_adm_dvf M := genDvfOrders M [::] [rel x y | false] (minn m n).

Lemma admissible_gen_adm_dvf m n (M : 'M[Z2]_(m,n)) :
let (vf,ords) := gen_adm_dvf M in admissible vf M ords.

Problem

It is not an executable algorithm

Table of Contents

(3) An effective method

4 Application
(5) Conclusions and Further work

Romero-Sergeraert's Algorithm

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

Algorithm

Input: A matrix M
Output: An admissible discrete vector field for M

Romero-Sergeraert's Algorithm

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

Algorithm

Input: A matrix M
Output: An admissible discrete vector field for M

Algorithm

Input: A chain complex C_{*} and an admissible discrete vector field of C_{*} Output: A reduced chain complex \hat{C}_{*}

From computation to verification through testing

- Haskell as programming language
- QuickCheck to test the programs
- Coq/SSReflect to verify the correctness of the programs

Haskell

Algorithm (gen_adm_dvf)

Input: A matrix M
Output: An admissible discrete vector field for M

```
Algorithm (reduced_cc)
Input: A chain complex \(C_{*}\)
Output: A reduced chain complex \(\hat{C}_{*}\)
> gen_adm_dvf [[1,0,1,1],[0,0,1,0],[1,1,0,1]]
\([(0,0),(1,2),(2,1)]\)
```


QuickCheck

- A specification of the properties which our program must verify
- Testing them
- Towards verification
- Detect bugs
> quickCheck M -> admissible (gen_adm_dvf M)
++ + OK, passed 100 tests

Coq/SSReflect

SSReflect Theorem:

Theorem gen_adm_dvf_is_admissible (M : seq (seq Z2)) : admissible (gen_adm_dvf M).

SSReflect Theorem:

Theorem is_reduction (C : chaincomplex) : reduction C (reduced_cc C).

SSReflect Theorem:

Theorem reduction_preserves_betti (C D : chaincomplex)
(rho : reduction C D) : Betti C = Betti D.

Experimental results

500 randomly generated matrices

- Initial size of the matrices: 100×300
- Time: 12 seconds

Experimental results

500 randomly generated matrices

- Initial size of the matrices: 100×300
- Time: 12 seconds
- After reduction: 5×50
- Time: milliseconds

Table of Contents

(4) Application
(5) Conclusions and Further work

Counting Synapses

- Synapses are the points of connection between neurons
- Relevance: Computational capabilities of the brain
- Procedures to modify the synaptic density may be an important asset in the treatment of neurological diseases
- An automated and reliable method is necessary

Counting Synapses

Counting Synapses

Counting Synapses

Results with biomedical images

- Without reduction procedure:
- Coq is not able to compute homology of this kind of images

Results with biomedical images

- Without reduction procedure:
- Coq is not able to compute homology of this kind of images
- After reduction procedure:
- Coq computes in just 25 seconds

Table of Contents

(4) Application
(5) Conclusions and Further work

Conclusions and Further work

- Conclusions:
- Method to reduce big images preserving homology
- Formalization of admissible discrete vector fields on Coq
- Remarkable reductions in different benchmarks

Conclusions and Further work

- Conclusions:
- Method to reduce big images preserving homology
- Formalization of admissible discrete vector fields on Coq
- Remarkable reductions in different benchmarks
- Further work:
- Matrices with coefficients over \mathbb{Z}
- Integration between Coq and ACL2
- Application of homological methods to biomedical problems

Verifying an algorithm computing Discrete Vector Fields for digital imaging

J. Heras, M. Poza, and J. Rubio

Department of Mathematics and Computer Science, University of La Rioja
Calculemus 2012

[^0]: * Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European Commission FP7, STREP project ForMath, n. 243847

