Verifying an algorithm computing Discrete Vector Fields for digital imaging*

J. Heras, M. Poza, and J. Rubio

Department of Mathematics and Computer Science, University of La Rioja

Calculemus 2012

*Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European

Commission FP7, STREP project ForMath, n. 243847

< A ▶

B b d B b

Algebraic Topology and Digital Images

(目) (ヨ) (ヨ)

J. Heras, M. Poza, and J. Rubio

Algebraic Topology and Digital Images

J. Heras, M. Poza, and J. Rubio

Verifying an algorithm computing Discrete Vector Fields for digital imaging 2/31

(同) (ヨ) (ヨ)

Algebraic Topology and Digital Images

Verifying an algorithm computing Discrete Vector Fields for digital imaging

Algebraic Topology and Digital Images

J. Heras, M. Poza, and J. Rubio

Verifying an algorithm computing Discrete Vector Fields for digital imaging

Algebraic Topology and Digital Images

J. Heras, M. Poza, and J. Rubio

Verifying an algorithm computing Discrete Vector Fields for digital imaging

Algebraic Topology and Digital Images

Goal

• Application:

Analysis of biomedical images

Goal

- Application:
 - Analysis of biomedical images
- Requirements:
 - Efficiency
 - Reliability

(同) (ヨ) (ヨ)

Goal

• Application:

- Analysis of biomedical images
- Requirements:
 - Efficiency
 - Reliability

Goal

A formally verified efficient method to compute homology from digital images

(同) (ヨ) (ヨ)

イロナ イヨナ イミナ イヨナ

J. Heras, M. Dénès, G. Mata, A. Mörtberg, M. Poza, and V. Siles. Towards a certified computation of homology groups. In proceedings 4th International Workshop on Computational Topology in Image Context. Lecture Notes in Computer Science, 7309, pages 49–57, 2012.

イロン イボン イヨン

Bottleneck

Compute Homology from Chain Complexes

J. Heras, M. Poza, and J. Rubio

イロン (得) (ヨ) (ヨ)

Goal of this work

Formalization in Coq/SSReflect of a procedure to reduce the size of Chain Complexes but preserving homology

J. Heras, M. Poza, and J. Rubio

Table of Contents

- Mathematical background
- 2 An abstract method
- 3 An effective method
- 4 Application
- **5** Conclusions and Further work

(P) < <p>) < <p>)

Table of Contents

- 2 An abstract method
- 3 An effective method
- Application
- 5 Conclusions and Further work

• (1) • (

Chain Complexes

Definition

A chain complex C_* is a pair of sequences $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ where:

- For every $q \in \mathbb{Z}$, the component C_q is a \mathbb{Z}_2 -module, the chain group of degree q
- For every $q \in \mathbb{Z}$, the component d_q is a module morphism $d_q : C_q \to C_{q-1}$, the differential map
- For every $q \in \mathbb{Z}$, the composition $d_q d_{q+1}$ is null: $d_q d_{q+1} = 0$

(日本) (日本) (日本)

Chain Complexes

Definition

A chain complex C_* is a pair of sequences $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ where:

- For every $q \in \mathbb{Z}$, the component C_q is a \mathbb{Z}_2 -module, the chain group of degree q
- For every $q \in \mathbb{Z}$, the component d_q is a module morphism $d_q : C_q \to C_{q-1}$, the differential map
- For every $q \in \mathbb{Z}$, the composition $d_q d_{q+1}$ is null: $d_q d_{q+1} = 0$

Definition

If $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ is a chain complex:

- The image $B_q = im \ d_{q+1} \subseteq C_q$ is the (sub)module of q-boundaries
- The kernel $Z_q = ker \ d_q \subseteq C_q$ is the (sub)module of q-cycles

イロン イヨン イヨン

Chain Complexes

Definition

A chain complex C_* is a pair of sequences $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ where:

- For every $q \in \mathbb{Z}$, the component C_q is a \mathbb{Z}_2 -module, the chain group of degree q
- For every $q \in \mathbb{Z}$, the component d_q is a module morphism $d_q : C_q \to C_{q-1}$, the differential map
- For every $q \in \mathbb{Z}$, the composition $d_q d_{q+1}$ is null: $d_q d_{q+1} = 0$

Definition

If $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ is a chain complex:

- The image $B_q = im \ d_{q+1} \subseteq C_q$ is the (sub)module of q-boundaries
- The kernel $Z_q = ker \ d_q \subseteq C_q$ is the (sub)module of q-cycles

Definition

Let $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ be a chain complex. For each degree $n \in \mathbb{Z}$, the n-homology module of C_* is defined as the quotient module

$$H_n(C_*)=\frac{Z_n}{B_n}$$

Reduction

Definition

A reduction ρ between two chain complexes $C_* \neq D_*$ (denoted by $\rho : C_* \Rightarrow D_*$) is a tern $\rho = (f, g, h)$

satisfying the following relations:

1)
$$fg = id_{D_*}$$

2)
$$d_C h + h d_C = i d_{C_*} - g f;$$

3)
$$fh = 0;$$
 $hg = 0;$ $hh = 0.$

Theorem

If $C_* \Rightarrow D_*$, then $C_* \cong D_* \oplus A_*$, with A_* acyclic, what implies that $H_n(C_*) \cong H_n(D_*)$ for all n.

J. Heras, M. Poza, and J. Rubio

イロン イヨン イヨン イヨン

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

イロナ イヨナ イヨナ イヨナ

F

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

F

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

F

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

F

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

F

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

・ロ・・ 日子・ ・ ヨ・ ・ ヨ・

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

- Given a chain complex C_* and a dvf, V over C_*
 - $C_* \Rightarrow C_*^c$
 - generators of C_*^c are critical cells of C_*

(日) (同) (日) (日)

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

• Given a chain complex C_* and a dvf, V over C_*

- $C_* \Rightarrow C_*^c$
- generators of C_*^c are critical cells of C_*

$$\begin{array}{c} \mathbf{0} \leftarrow \mathbb{Z}_2^{16} \xleftarrow{d_1} \mathbb{Z}_2^{22} \xleftarrow{d_2} \mathbb{Z}_2^{16} \leftarrow \mathbf{0} \\ \downarrow \\ \mathbf{0} \leftarrow \mathbb{Z}_2 \xleftarrow{\widehat{d_1}} \mathbb{Z}_2 \xleftarrow{\widehat{d_2}} \mathbf{0} \leftarrow \mathbf{0} \end{array}$$

(日) (同) (日) (日)

Definition

Let $C_* = (C_p, d_p)_{p \in \mathbb{Z}}$ a free chain complex with distinguished \mathbb{Z}_2 -basis $\beta_p \subset C_p$. A discrete vector field V on C_* is a collection of pairs $V = \{(\sigma_i; \tau_i)\}_{i \in I}$ satisfying the conditions:

- Every σ_i is some element of β_p , in which case $\tau_i \in \beta_{p+1}$. The degree p depends on i and in general is not constant.
- Every component σ_i is a regular face of the corresponding τ_i .
- Each generator (cell) of C_{*} appears at most once in V.

イロン (得) (言) (言)

Definition

Let $C_* = (C_p, d_p)_{p \in \mathbb{Z}}$ a free chain complex with distinguished \mathbb{Z}_2 -basis $\beta_p \subset C_p$. A discrete vector field V on C_* is a collection of pairs $V = \{(\sigma_i; \tau_i)\}_{i \in I}$ satisfying the conditions:

- Every σ_i is some element of β_p , in which case $\tau_i \in \beta_{p+1}$. The degree p depends on i and in general is not constant.
- Every component σ_i is a regular face of the corresponding τ_i .
- Each generator (cell) of C_{*} appears at most once in V.

Definition

A V-path of degree p and length m is a sequence $\pi = ((\sigma_{i_k}, \tau_{i_k}))_{0 \le k < m}$ satisfying:

- Every pair (σ_{ik}, τ_{ik}) is a component of V and τ_{ik} is a p-cell.
- For every 0 < k < m, the component σ_{ik} is a face of τ_{ik-1}, non necessarily regular, but different from σ_{ik-1}.

イロン (得) イヨン (ヨ)

Definition

A discrete vector field V is admissible if for every $p \in \mathbb{Z}$, a function $\lambda_p : \beta_p \to \mathbb{N}$ is provided satisfying the following property: every V-path starting from $\sigma \in \beta_p$ has a length bounded by $\lambda_p(\sigma)$.

Definition

A discrete vector field V is admissible if for every $p \in \mathbb{Z}$, a function $\lambda_p : \beta_p \to \mathbb{N}$ is provided satisfying the following property: every V-path starting from $\sigma \in \beta_p$ has a length bounded by $\lambda_p(\sigma)$.

Definition

A cell σ which does not appear in a discrete vector field V is called a critical cell.

イロナ イボト イヨト イヨト

Definition

A discrete vector field V is admissible if for every $p \in \mathbb{Z}$, a function $\lambda_p : \beta_p \to \mathbb{N}$ is provided satisfying the following property: every V-path starting from $\sigma \in \beta_p$ has a length bounded by $\lambda_p(\sigma)$.

Definition

A cell σ which does not appear in a discrete vector field V is called a critical cell.

Theorem

Let $C_* = (C_p, d_p)_{p \in \mathbb{Z}}$ be a free chain complex and $V = \{(\sigma_i; \tau_i)\}_{i \in I}$ be an admissible discrete vector field on C_* . Then the vector field V defines a canonical reduction $\rho = (f, g, h) : (C_p, d_p) \Rightarrow (C_p^c, d_p')$ where $C_p^c = \mathbb{Z}_2[\beta_p^c]$ is the free \mathbb{Z}_2 -module generated by the critical p-cells.

Example: an admissible discrete vector field

・回 と ・ ヨ と ・ ヨ と

Example: an admissible discrete vector field

J. Heras, M. Poza, and J. Rubio

Verifying an algorithm computing Discrete Vector Fields for digital imaging

(同) (ヨ) (ヨ)

Mathematical background Discrete Morse Theory

Example: an admissible discrete vector field

J. Heras, M. Poza, and J. Rubio

Verifying an algorithm computing Discrete Vector Fields for digital imaging

・回 と ・ ヨ と ・ ヨ と

Mathematical background Discrete Morse Theory

Example: an admissible discrete vector field

J. Heras, M. Poza, and J. Rubio

Verifying an algorithm computing Discrete Vector Fields for digital imaging

(同) (ヨ) (ヨ)

Mathematical background Discrete Morse Theory

Example: an admissible discrete vector field

(日本) (日本) (日本)

Differential maps of a Chain Complex can be represented as matrices

 $\dots \leftarrow \mathbb{Z}_2^m \xleftarrow{M} \mathbb{Z}_2^n \leftarrow \dots$

Differential maps of a Chain Complex can be represented as matrices

$$\dots \leftarrow \mathbb{Z}_2^m \xleftarrow{M} \mathbb{Z}_2^n \leftarrow \dots$$

Definition

An admissible vector field V for M is nothing but a set of integer pairs $\{(a_i, b_i)\}$ satisfying these conditions:

- $1 \leq a_i \leq m \text{ and } 1 \leq b_i \leq n$
- 2 The entry $M[a_i, b_i]$ of the matrix is 1
- 3 The indices a_i (resp. b_i) are pairwise different
- In the second second

J. Heras, M. Poza, and J. Rubio

イロト (得) イヨト (ヨト

Differential maps of a Chain Complex can be represented as matrices

$$\dots \leftarrow \mathbb{Z}_2^m \xleftarrow{M} \mathbb{Z}_2^n \leftarrow \dots$$

Definition

An admissible vector field V for M is nothing but a set of integer pairs $\{(a_i, b_i)\}$ satisfying these conditions:

- 2 The entry $M[a_i, b_i]$ of the matrix is 1
- 3 The indices a_i (resp. b_i) are pairwise different
 - In the second state of loops • Non existence of loops

J. Heras, M. Poza, and J. Rubio

イロナ イヨナ イヨナ イヨナ

Differential maps of a Chain Complex can be represented as matrices

$$\dots \leftarrow \mathbb{Z}_2^m \xleftarrow{M} \mathbb{Z}_2^n \leftarrow \dots$$

Definition

An admissible vector field V for M is nothing but a set of integer pairs $\{(a_i, b_i)\}$ satisfying these conditions:

- $1 \leq a_i \leq m \text{ and } 1 \leq b_i \leq n$
- 2 The entry $M[a_i, b_i]$ of the matrix is 1
- 3 The indices a_i (resp. b_i) are pairwise different
- Mon existence of loops

J. Heras, M. Poza, and J. Rubio

イロト (得) イヨト (ヨト

Table of Contents

・ 同 ト ・ ヨ ト ・ ヨ ト

Coq/SSReflect

• Coq:

- An Interactive Proof Assistant
- Based on Calculus of Inductive Constructions
- Interesting feature: program extraction from a constructive proof

(日) (ヨ) (ヨ)

Coq/SSReflect

• Coq:

- An Interactive Proof Assistant
- Based on Calculus of Inductive Constructions
- Interesting feature: program extraction from a constructive proof
- SSReflect:
 - Extension of Coq
 - Developed while formalizing the Four Color Theorem by G. Gonthier
 - Currently, it is used in the formalization of Feit-Thompson Theorem

(日) (ヨ) (ヨ)

Admissible discrete vector fields in SSReflect

Definition

An admissible discrete vector field V for M is nothing but a set of integer pairs $\{(a_i, b_i)\}$ satisfying these conditions:

- $1 \leq a_i \leq m \text{ and } 1 \leq b_i \leq n$
- 2 The entry M[a_i, b_i] of the matrix is 1
- 3 The indices a_i (resp. b_i) are pairwise different
- In the second second

イロナ イボト イヨト イヨト

The abstract algorithm

イロト (得) イヨト (ヨト

The abstract algorithm

```
Fixpoint genDvfOrders M V (ords : simpl_rel _) k :=
 if k is 1.+1 then
   let P := [pred ij | admissible (ij::V) M
                      (relU ords (gen_orders M ij.1 ij.2))] in
   if pick P is Some (i,j)
      then genDvfOrders M ((i,j)::V)
                       (relU ords (gen_orders M i j)) 1
   else (V, ords)
 else (V. ords).
Definition gen_adm_dvf M :=
 genDvfOrders M [::] [rel x y | false] (minn m n).
Lemma admissible_gen_adm_dvf m n (M : 'M[Z2]_(m,n)) :
let (vf,ords) := gen_adm_dvf M in admissible vf M ords.
```

Problem

It is not an executable algorithm

J. Heras, M. Poza, and J. Rubio

イロン (得) イヨン (ヨ)

Table of Contents

Romero-Sergeraert's Algorithm

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

Algorithm

Input: A matrix M Output: An admissible discrete vector field for M

J. Heras, M. Poza, and J. Rubio

Verifying an algorithm computing Discrete Vector Fields for digital imaging

イロト イポト イヨト イヨト

Romero-Sergeraert's Algorithm

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

Algorithm

Input: A matrix M Output: An admissible discrete vector field for M

Algorithm

Input: A chain complex C_* and an admissible discrete vector field of C_* Output: A reduced chain complex \hat{C}_*

イロト (得) イヨト (ヨト

From computation to verification through testing

- Haskell as programming language
- *QuickCheck* to test the programs
- Coq/SSReflect to verify the correctness of the programs

Haskell

Algorithm (*gen_adm_dvf*)

Input: A matrix M Output: An admissible discrete vector field for M

Algorithm (*reduced_cc*)

Input: A chain complex C_* Output: A reduced chain complex $\hat{C_*}$

```
> gen_adm_dvf [[1,0,1,1],[0,0,1,0],[1,1,0,1]]
[(0,0),(1,2),(2,1)]
```

イロト (得) イヨト (ヨト

QuickCheck

- A specification of the properties which our program must verify
- Testing them
 - Towards verification
 - Detect bugs
- > quickCheck M -> admissible (gen_adm_dvf M)
 + + + OK, passed 100 tests

イロナ イボト イヨト イヨト

Coq/SSReflect

SSReflect Theorem:

Theorem gen_adm_dvf_is_admissible (M : seq (seq Z2)) : admissible (gen_adm_dvf M).

SSReflect Theorem:

Theorem is_reduction (C : chaincomplex) : reduction C (reduced_cc C).

SSReflect Theorem:

Theorem reduction_preserves_betti (C D : chaincomplex) (rho : reduction C D) : Betti C = Betti D.

Experimental results

500 randomly generated matrices

- Initial size of the matrices: 100×300
- Time: 12 seconds

(同) (ヨ) (ヨ)

Experimental results

500 randomly generated matrices

- Initial size of the matrices: 100×300
- Time: 12 seconds
- After reduction: 5×50
- Time: milliseconds

(A) < (A)

Table of Contents

J. Heras, M. Poza, and J. Rubio

Verifying an algorithm computing Discrete Vector Fields for digital imaging

(P) < <p>) < <p>)

- Synapses are the points of connection between neurons
- *Relevance*: Computational capabilities of the brain
- Procedures to modify the synaptic density may be an important asset in the treatment of neurological diseases
- An automated and reliable method is necessary

◆□ → ◆ □ → ◆ □ →

イロン イヨン イヨン イヨン

J. Heras, M. Poza, and J. Rubio

Verifying an algorithm computing Discrete Vector Fields for digital imaging

Application (

Counting synapses

Results with biomedical images

- Without reduction procedure:
 - Coq is not able to compute homology of this kind of images

(同) (ヨ) (ヨ)

Results with biomedical images

- Without reduction procedure:
 - Coq is not able to compute homology of this kind of images
- After reduction procedure:
 - Coq computes in just 25 seconds

3.1

28/31

◆ 同 ♪ - ₹ 三 ♪

Table of Contents

5 Conclusions and Further work

J. Heras, M. Poza, and J. Rubio

Verifying an algorithm computing Discrete Vector Fields for digital imaging

(日本) (日本) (日本)

Conclusions and Further work

Conclusions:

- Method to reduce big images preserving homology
- Formalization of admissible discrete vector fields on Coq
- Remarkable reductions in different benchmarks

(同) (ヨ) (ヨ)

Conclusions and Further work

Conclusions:

- Method to reduce big images preserving homology
- Formalization of admissible discrete vector fields on Coq
- Remarkable reductions in different benchmarks
- Further work:
 - $\bullet\,$ Matrices with coefficients over $\mathbb Z$
 - Integration between Coq and ACL2
 - Application of homological methods to biomedical problems

・ 同 ト ・ ヨ ト ・ ヨ ト

Department of Mathematics and Computer Science, University of La Rioja

Calculemus 2012

J. Heras, M. Poza, and J. Rubio

Verifying an algorithm computing Discrete Vector Fields for digital imaging

(同) (ヨ) (ヨ)