Speeding up Cylindrical Algebraic Decomposition by Means of Gröbner Bases.

James Davenport (with David Wilson, Russell Bradford)¹ University of Bath; J.H.Davenport@bath.ac.uk

13 July 2012

¹Special Mention: Matthew England

"If all you have is a hammer, all your problems look like nails."

"I have this hammer (Cylindrical Algebraic Decomposition): which window should I break?"

More prosaically: "Issues in Problem Formulation".

To solve linear system, first put them in upper triangular form: Sure, but with

$$\left(\begin{array}{cccccc} 9 & 0 & 0 & 0 & 0 & 0 \\ 8 & 7 & 0 & 0 & 0 & 0 \\ 7 & 6 & 5 & 0 & 0 & 0 \\ 6 & 5 & 4 & 3 & 0 & 0 \\ 5 & 4 & 3 & 2 & 1 & 0 \\ 4 & 3 & 4 & 3 & 2 & 1 \end{array}\right)$$

would you really do this? Certainly not "by hand".

Given a real Tarski formula:

$$(Q_k x_k)(Q_{k+1} x_{k+1}) \cdots (Q_n x_n) \Phi(x_1, \ldots, x_n)$$
(P)

where each Q_i is either \forall or \exists and Φ is quantifier free, produce a quantifier free equivalent formula $\Psi(x_1, \ldots, x_{k-1})$. Note that $\forall x \forall y \equiv \forall y \forall x$ so we are really only interested in **blocks** of quantifiers.

Known to be doubly exponential in number of blocks [DH88]

Cylindrical Algebraic Decomposition (CAD) — Collins1975

```
Input: P(x_1,\ldots,x_n)
     project x_n to get P_{n-1}(x_1, ..., x_{n-1}), then x_{n-1}, ..., x_n
        base solve resulting equations (UP) in x_1 alone, with N
              roots and N+1 intervals
      lift x<sub>2</sub> N 1-D slices and N + 1 2-D cylinders, each
              partitioned by polynomials(x_1, x_2)
keep lifting x_3, \ldots, x_n
    analyse result, to get regions (x_1, \ldots, x_{k-1}) where formula is
              true.
```

The cost is in the lifting, but the control is in the projection. x_1, \ldots, x_{k-1} can be in any order, and order within blocks doesn't matter.

Indeed so. What should we do?

Notation

For
$$p = \sum_{(i_1,...,i_n) \in I} a_{i_1,...,i_n} x_1^{i_1} \dots x_n^{i_n}$$
, define the sum of total degrees $\operatorname{sotd}(p) = \sum_{(i_1,...,i_n) \in I} i_1 + \dots + i_n$.

Observation (1)

For a given problem (P), the time, and number of regions, for different orders is closely correlated with sotd(UP). [DSS04].

Therefore one could try all possible (legal) projections, and lift the one with least sotd. Note that this parallelises well

Observation (2)

For a given problem (P), As we project $(P_{n-1}), \ldots, (P_2), (UP)$, the best sotd (P_k) tends to come from the best sotd (P_{k+1}) . [DSS04].

Hence a greedy algorithm: pick the best x_n , in terms of $sotd(P_{n-1})$, then best x_{n-1}, \ldots . $O(n^2)$ projection operations, as opposed to O(n!) for previous slide and O(n) for the "no choice" variant. Very effective in practice.

Cylindrical Algebraic Decomposition: Special Case

Suppose we are given a problem, which we may formulate as

quantified variables $e_1 = 0 \land \dots \land e_k = 0 \land B(f_1, \dots, f_l), (P)$

where *B* is a Boolean combination of conditions $= 0, \neq 0, < 0$ etc. on some polynomials f_j . Examples

• A branch cut $\Im(f(z)) = 0 \land \Re(f(z)) < 0$

see ISSAC 2010 poster

• An obstacle in robotics

then we may be able, by applying Gröbner techniques to the e_j , producing $e_j^{(i)}$, and then reducing the f_j , to produce various alternative formulations

q.v.
$$e_1^{(i)} = 0 \land \dots \land e_{k^{(i)}}^{(i)} = 0 \land B(f_1^{(i)}, \dots, f_l^{(i)}),$$
 (P⁽ⁱ⁾)

Which $(P^{(i)})$ should we pick?

They had much the same idea, and used state-of-the-art technology (for 1991): Gröbner bases and an early version of QEPCAD [Bro03]. We use current QEPCAD (=_{Col}), also Maple [CMMXY09] (<_{\Delta R}). Unlike them, we never observed a case where the cost of Gröbner was significant compared to the CAD Examples come from Wilson's example bank: http://opus.bath.ac.uk/29503.

Table: [BH91] Examples for full CADs

	$=_{Col}$		$=_{G}/=$	⁼ Col	$<_{\Delta}$	R	$=_{G}/<_{\Delta R}$				
	Time	Cells	Time	Cells	Time	Cells	Time	Cells			
ΙA	236	3723	99	273	29426	3763	2470	273			
ΙB	212	3001	97	189	36262	2795	1482	189			
RA	150	2101	110	105	17355	1267	570	165			
RΒ	21091	7119	104	141	356670	7119	470	141			
E A*	7390	114541	3214	53559	262623	28557	62496	14439			
E B*	Error	?	Error	?	> 1000 <i>s</i>	?	> 1000 <i>s</i>	?			
S A*	115	1751	104	297	16014	1751	2025	297			
S B*	253	6091	105	243	43439	6091	1647	243			
C A*	820	8387	Error	?	216028	7895	> 1000 <i>s</i>	?			
C B*	Error	?	Error	?	> 1000 s	?	> 1000s	?			

* indicates that the linear inequalities have been omitted in this version.

Precisely which window should I use my hammer on?

- Do we Gröbner $(=_G)$?
- If so which order?
- How much reduction of inequalities etc. $(\stackrel{*}{\rightarrow}^{G})$ by the result of Gröbner?
- As well as the choice of order for CAD
- Decisions, decisions, decisions!

Table: Examples from [CMMXY09]

	< <u>Δ</u>	R	$=_{G}/$	Ratio							
	Time	Cells	Time		Cells	Time	Cells				
Cyclic–3	3136	381	20 + 245 =	265	21	11.83	18.14				
Cyclic–4	> 1000s	?	64 + 5813 =	5877	621	?	?				
2	2249	895	22 + 1845 =	1867	579	1.20	1.55				
4	3225	421	24 + 19738 =	19762	1481	0.16	0.28				
6	363	41	20 + 918 =	938	89	0.39	0.46				
7	3667	895	26 + 6537 =	6563	1211	0.56	0.74				
8	3216	365	21 + 174 =	195	51	16.49	7.16				
13	14342	4949	18 + 220 =	238	81	60.26	61.10				
14	334860	27551	21 + 971 =	992	423	337.56	65.13				

You win some, you lose some!

Table: [BH91]: degrees

		$<_{\Delta R}$:	$=_{G}/<_{\Delta R}$	
	degrees	Time	Cells	degrees	Time	Cells
Intersection A	6 / 14	29426	3763	17 / 50	2470	273
Intersection B	6 / 14	36262	2795	15 / 41	1482	189
Random A	9 / 16	17355	1219	19 / 68	570	165
Random B	9 / 16	356670	7119	19 / 73	470	141
Ellipse A*	6 / 24	262623	28557	6 / 26	62496	14439
Ellipse B*	6 / 24	> 1000 s	?	25 / 253	> 1000 s	?
Solotareff A*	10 / 25	16014	1751	10 / 28	2025	297
Solotareff B*	10 / 25	43439	6091	21 / 69	1647	243
Collision A*	6 / 23	216028	7895	27 / 251	> 1000 s	?
Collision B*	6 / 23	> 1000s	?	36 / 875	> 1000s	?

'degrees' is $td(A_n)/sotd(A_n)$.

The metric TNoI: Total Number of Indeterminates

$$\operatorname{TNoI}(F) = \sum_{f \in F} \operatorname{NoI}(f), \quad (1)$$

where NoI(f) is the number of indeterminates present in a polynomial f.

Table: TNoI for Spheres

	$<_{\Delta R}$			$=_{G}/<_{\Delta R}$			$=_{G}/\overset{*}{\rightarrow}^{G}/<_{\Delta \mathbf{R}}$		
	TNo	TNoI Time Cells		TNo	ITime Cells		TNoITime C		Cells
S_1, S_2, C	8	8654	1073	5	905	267	4	270	99
<i>S</i> ₂ , <i>S</i> ₃ , <i>C</i>	8	189202	12097	6	5911	1299	6	499	213
S_3, S_4, C	8	248340	11957	7	8159	1359	7	580	213

Table: TNoI for [BH91]

		$<_{\Delta R}$		$=_{G}/<_{\Delta R}$			
	TNoI	Time	Cells	TNoI	Time	Cells	
Intersection A	8	29426	3763	7	2470	273	
Intersection B	8	36262	2795	7	1482	189	
Random A	9	17355	1219	5	570	165	
Random B	9	356670	7119	5	471	141	
Ellipse A*	7	262623	28557	6	62496	14439	
Ellipse B*	7	> 1000 s	?	21	> 1000 s	?	
Solotareff A*	9	16014	1751	8	2025	297	
Solotareff B*	9	43439	6091	7	1647	243	
Collision A*	7	216028	7895	18	> 1000s	?	
Collision B*	7	> 1000s	?	22	> 1000s	?	

Table: TNoI for [CMMXY09]

		$<_{\Delta R}$		$=_{G}/<_{\Delta R}$					
	TNoI	Time	Cells	TNoI	Time		Cells		
Cyclic–3	9	3136	381	6	20 + 245 =	265	21		
Cyclic–4	16	> 1000 s	?	6	64 + 5813 =	5877	621		
2	7	2249	895	14	22 + 1845 =	1867	579		
4	6	3225	421	11	24 + 19738 =	19762	1481		
6	4	363	41	5	20 + 918 =	938	89		
7	8	3667	895	22	26 + 6537 =	6563	1211		
8	6	3216	365	5	21 + 174 =	195	51		
13	9	14342	4949	4	18 + 220 =	238	81		
14	11	334860	27551	9	21 + 971 =	992	423		

We don't know!

And it doesn't always: remember that false negative! What causes TNoI to decrease?

- The number of polynomials goes down (clearly a win)
- ? But factoring a polynomial increases TNoI, even though it's generally a win.
- A polynomial ceases to involve a variable, so there are fewer/lower down resultants
- A polynomial gets replaced by several much simpler ones
- ! We can't really build a model of this, though.

- Gröbner has become (relatively) a lot faster, and is close to negligeable
- Generally $=_{Col}$ (33 years after inception) has become a lot faster than $<_{\Delta R}$ (3 years after inception)
- We have not found a transformation (=_G or $\stackrel{*}{\rightarrow}^{G}$) which decreases TNoI, but makes the problem slower
- But there are examples where TNoI increases but the problem is faster
- Generalises "preconditioning" (ISSAC 2010 poster)
- Not only are there many formulations of the problem, there are many formulations of the answer

Bibliography

B. Buchberger and H. Hong. Speeding-up Quantifier Elimination by Gröbner Bases. RISC Technical Report 91-06, 1991. C.W. Brown. QEPCAD B: a program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bulletin 4, 37:97–108, 2003. C. Chen, M. Moreno Maza, B. Xia, and L. Yang. Computing Cylindrical Algebraic Decomposition via Triangular Decomposition. In Proceedings ISSAC 2009, pages 95–102, 2009. J.H. Davenport and J. Heintz. Real Quantifier Elimination is Doubly Exponential. J. Symbolic Comp., 5:29–35, 1988. A. Dolzmann, A. Seidl, and Th. Sturm. Efficient Projection Orders for CAD. In *Proceedings ISSAC 2004*, pages 111–118, 2004.