Formalizing Frankl's Conjecture: FC-Families

Filip Marić, Bojan Vučković, Miodrag Živković

*Faculty of Mathematics, University of Belgrade

Intelligent Computer Mathematics, 12. 7. 2012.

Outline

- 1 Proof-by-Computation
- 2 On Frankl's Conjecture
- 3 Frankl's condition characterized by weights and shares
 - Main idea
 - Formalization
- 4 FC families
 - Main idea
 - Formalization
- 5 Implementation
- 6 Symmetries
- 7 Conclusions and Further Work

About formal theorem proving

- Formalized mathematics and interactive theorem provers (proof assistants) have made great progress in recent years.
- Many classical mathematical theorems are formally proved.
- Intensive use in hardware and software verification.

Proof-by-computation paradigm

- Most successful results in interactive theorem proving are for the problems that require proofs with much computational content.
- Highly complex proofs (and therefore often require justifications by formal means).
- Proofs combine classical mathematical statements with complex computing machinery (usually computer implementation of combinatorial algorithms).
- The corresponding paradigm is sometimes referred to as proof-by-evaluation or proof-by-computation.

Famous examples of proof-by-computation

- Four-Color Theorem Georges Gonthier, Coq.
- Kelpler's conjecture Thomas Hales, flyspeck project.

Frankl's conjecture

Frankl's conjecture (Péter Frankl, 1979.)

For every non-trivial, finite, union-closed family of sets there is an element contained in at least half of the sets.

or dually

Frankl's conjecture

For every non-trivial, finite, intersection-closed family of sets there is an element contained in at most half of the sets.

Frankl's conjecture — example

Example

$$F = \{\{0\}, \{1\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}\}$$

- F is union-closed.
- |F| = 5, $\#_F 0 = 3$, $\#_F 1 = 4$, $\#_F 2 = 2$

Frankl's conjecture — status

- Conjecture is still open (up to the best of our knowledge).
- It is known to hold for:
 - 1 families of at most 36 sets (Lo Faro, 1994.),
 - 2 families of at most 40 sets? (Roberts, 1992., unpublished),
 - families of sets such that their union has at most 11 elements (Bošnjak, Marković, 2008),
 - 4 families of sets such that their union has at most 12 elements (Vučković, Živković, 2011., computer assisted approach, unpublished).

Vučković's and Živković's proof

- Proof-by-computation.
- Sophisticated techniques (naive approach is doomed to fail requires listing $2^{2^{12}} = 2^{4096}$ families).
- JAVA programs that perform combinatorial search.
- Programs are highly complex and optimized for efficiency.
- Abstract mathematics and concrete implementation tricks are not separated.
- How can this kind of proof be trusted?
- Newer versions of the programs generate proof traces that could be inspected by independent checkers.
- Ideal candidate for formalization!

└ Main idea

Technique — idea

Is a the Frankl's element?

Is a or b the Frankl's element?

Arbitrary weights (e.g., a = 1, b = 2)?

$$\{\{a,b,c\}, \{a,c,d\}, \{b,c,d\}\}\$$
 3 1 2 = 6 \ge 3 \cdot 3/2 weights

└ Main idea

Technique — idea

Is a the Frankl's element?

Is a or b the Frankl's element?

Arbitrary weights (e.g., a = 1, b = 2)?

Formalization

Frankl's condition — formal definition

frankl
$$F \equiv \exists a. \ a \in \bigcup F \land 2 \cdot \#_F a \geq |F|$$

- Note that division is avoided in order to stay within integers
 this is done throughout the formalization
 - this is done throughout the formalization.

Frankl's condition characterized by weights and shares

Formalization

Weight functions

Weight functions — definition

A function $w: X \to \mathbb{N}$ is a weight function on X, denoted by $wf_X w$, iff $\exists x \in X$. w(x) > 0.

Weight of a set A, denoted by w(A), is the value $\sum_{x \in A} w(x)$. Weight of a family F, denoted by w(F), is the value $\sum_{A \in F} w(A)$. Formalization

Weight functions

Weight functions — example

- Let w be a function such that w(a) = 1, w(b) = 2, w(c) = 0, w(d) = 0.
- w is clearly a weight function.
- $w({a,b,c}) = 3$,
- $w(\{\{a,b,c\},\{a,c,d\},\{b,c,d\}\}) = 3+1+2=7.$

Frankl's condition characterized by weights and shares

Formalization

Frankl's condition characterization using weight functions

Lemma

frankl
$$F \iff \exists w. \ \mathsf{wf}_{(\bigcup F)} \ w \ \land \ 2 \cdot w(F) \ge w(\bigcup F) \cdot |F|$$

Proof sketch

 \Rightarrow : If F is Frankl's, then let w assign 1 to the element a that is contained in at least half of the sets and 0 to all other elements. Then, $w(F) = \#_F a$ and $w(\bigcup F) = 1$, and since $\#_F a \ge |F|/2$, the statement holds.

 \Leftarrow : If F is not Frankl's, then for all a, it holds $\#_F a < |F|/2$. Then, $2 \cdot w(F) = 2 \cdot \sum_{a \in \bigcup F} \#_F a \cdot w(a) < |F| \cdot \sum_{a \in \bigcup F} w(a) = |F| \cdot w(\bigcup F)$.

L-Formalization

Shares

A slightly more operative characterization is obtained by introducing set share concept, as it expresses how much does each member set contributes to a Family being Frankl's.

Share — definition

Let w be a weight function and X a set.

Share of a set A with respect to w and X, denoted by $\bar{w}_X(A)$, is the value $2 \cdot w(A) - w(X)$.

Share of a family F with respect to w and X, denoted by $\bar{w}_X(F)$, is the value $\sum_{A \in F} \bar{w}_X(A)$.

Proposition

$$\bar{w}_X(F) = 2 \cdot w(F) - w(X) \cdot |F|$$

Formalization

Share — example

Let w be a function such that w(a) = 1, w(b) = 2, and w(c) = 0, w(d) = 0.

$$\bar{w}_{\{a,b,c,d\}}(\{a,b,c\}) = 2 \cdot w(\{a,b,c\}) - w(\{a,b,c,d\})$$

= $2 \cdot 3 - 3 = 3$.

$$\bar{w}_{\{a,b,c,d\}}(\{\{a,b,c\},\{a,c,d\},\{b,c,d\}\}) = (2 \cdot 3 - 3) + (2 \cdot 1 - 3) + (2 \cdot 2 - 3) = 3.$$

Frankl's condition characterized by weights and shares

Formalization

Frankl's condition characterization using shares functions

Lemma

frankl
$$F \iff \exists w. \ \mathsf{wf}_{(\bigcup F)} \ w \ \land \ \bar{w}_{(\bigcup F)}(F) \geq 0$$

FC-families

- In this work, we consider only analyzing Frankl-Complete Families (FC-families), and not the full Frankl's conjecture.
- FC-families play and important role in attacking the full Frankl's conjecture, since they enable significant search space prunning.
- Classifying FC-families has been a research topic on its own.

Definition

A family F_c is an FC-family if for all finite union closed families F containing F_c one of the elements in $\bigcup F_c$ is contained in at least half of the sets of F (so F satisfies Frankl's condition).

Examples of FC-families

- One-element family $\{\{a\}\}$ is an FC-family.
- Two-element family $\{\{a_0, a_1\}\}$ is an FC-family.
- Three-element family $\{\{a_0, a_1, a_2\}\}$ is *not* an FC-family...
- Each family with three three-element sets whose union is contained in a five element set is an FC-family (e.g., $\{\{a_0, a_1, a_2\}, \{a_0, a_1, a_3\}, \{a_2, a_3, a_4\}\}\}$).
-

FC family

- Consider the problem of proving that certain family is an FC-family.
- For example, let us analyze how to proof that each finite union-closed family containing $F_c = \{\{a_0, a_1\}\}$ is Frankl's.
- Consider, for example, the union-closed family *F*:

$$\{\{a_0, a_1\}, \{x_0\}, \{x_0, a_0\}, \{x_0, x_1\}, \{x_0, a_0, a_1\}, \{x_0, x_1, a_0\}, \{x_0, x_1, a_1\}, \{x_0, x_1, a_0, a_1\}\}$$

■ How to show that it is Frankl's?

Reorganize F and split into 4 parts:

```
 \begin{cases} \{ \} & - & \{ \{a_0, a_1 \} \} \\ \{x_0 \} & - & \{ \{x_0 \}, \{x_0, a_0 \}, \{x_0, a_0, a_1 \} \} \\ \{x_1 \} & - & \{ \} \\ \{x_0, x_1 \} & - & \{ \{x_0, x_1 \}, \{x_0, x_1, a_0 \}, \{x_0, x_1, a_1 \}, \{x_0, x_1, a_0, a_1 \} \} \end{cases}
```

Technique — idea

- Let w be a weight function, s.t., $w(x_0) = w(x_1) = 0$.
- Total share of F (i.e., $\bar{w}_{(\bigcup F)}(F)$) is the sum of shares of all parts.
- It is non-negative if the shares of all parts are non-negative.

$$\begin{cases} \{ \} & - \{ \{a_0, a_1 \} \} \\ \{x_0 \} & - \{ \{x_0 \}, \{x_0, a_0 \}, \{x_0, a_0, a_1 \} \} \\ \{x_1 \} & - \{ \} \\ \{x_0, x_1 \} & - \{ \{x_0, x_1 \}, \{x_0, x_1, a_0 \}, \{x_0, x_1, a_1 \}, \{x_0, x_1, a_0, a_1 \} \} \\ - 0 \end{cases}$$

Technique — idea

- Let w be a weight function, s.t., $w(x_0) = w(x_1) = 0$.
- Total share of F (i.e., $\bar{w}_{(\bigcup F)}(F)$) is the sum of shares of all parts.
- It is non-negative if the shares of all parts are non-negative.

Things do not change if the elements x_0 and x_1 are omitted (as their weight is 0).

$$\begin{cases} \left. \left. \left. \left. \left\{ \left\{ a_{0}, a_{1} \right\} \right\} \right. \right. \right. - \left. \left. \left\{ a_{0}, a_{1} \right\} \right\} \right. \right. - \left. \left\{ a_{0}, a_{1} \right\} \right\} \right. \\ \left. \left\{ \left\{ x_{1} \right\} \right. - \left. \left\{ \left\{ \left\{ a_{0} \right\}, \left\{ a_{0}, a_{1} \right\} \right\} \right. - \left. \left. \left\{ a_{0}, a_{1} \right\} \right\} \right. - \left. \left\{ a_{0}, a_{1} \right\} \right\} \right. \right. - \left. \left\{ \left\{ \left\{ a_{0}, a_{1} \right\}, \left\{ a_{0}, a_{1} \right\} \right\} \right. \right. - \left. \left\{ \left\{ a_{0}, a_{1} \right\}, \left\{ a_{0}, a_{1} \right\} \right\} \right. \right.$$

Technique — idea

Notice that all four parts are:

- built of elements of the initial family $\{\{a_0, a_1\}\}$,
- union closed,
- closed for unions with the members of the initial family $\{\{a_0, a_1\}\}$ (although they need not contain these).

Different families F will give different parts, but these parts will always satisfy the three given conditions.

FC families
Main idea

Technique — idea

General proof strategy

To prove that an initial family is an FC-family, choose an appropriate weight function w, list all possible families satisfying three given conditions and show that all of them have non-negative shares (with respect to w).

Union closed for unions of a family

Definition

A set family F is union closed for F_c , denoted by uc_{F_c} F, iff

uc
$$F \land (\forall A \in F. \ \forall B \in F_c. \ A \cup B \in F)$$
.

Hypercubes

An S-hypercube with a base K, denoted by hc_K^S , is the family $\{A.\ K\subseteq A\land A\subseteq K\cup S\}$. Alternatively, a hypercube can be characterized by $hc_K^S=\{K\cup A.\ A\in \text{pow }S\}$.

Proposition

1

$$\mathsf{pow}\; (\mathcal{K} \cup \mathcal{S}) = \bigcup_{\mathcal{K}' \subset \mathcal{K}} \mathsf{hc}_{\mathcal{K}'}^{\mathcal{S}}$$

2 If K_1 and K_2 are different and disjoint with S, then $hc_{K_1}^S$ and $hc_{K_2}^S$ are disjoint.

Definition

A hyper-share of a family F with respect to the weight function w, the hypercube hc_K^S and the set X, denoted by $\bar{w}_{KX}^S(F)$, is the value $\sum_{A\in\operatorname{hc}_k^S\cap F}\bar{w}_X(A)$.

Lemma

Let $K \cup S = \bigcup F$ and $K \cap S = \emptyset$, and let w be a weight function on $\bigcup F$.

1

$$\bar{w}_{(\bigcup F)}(F) = \sum_{K' \subset K} \bar{w}_{K'(\bigcup F)}^{S}(F)$$

2 If $\forall K' \subseteq K$. $\bar{w}_{K'(|\cdot|F)}^{S}(F) \ge 0$, then frankl F.

Definition

Projection of a family F onto a hypercube hc_K^S , denoted by $hc_K^S \lfloor F \rfloor$, is the set $\{A - K, A \in hc_K^S \cap F\}$.

Proposition

- I If $K \cap S = \emptyset$ and $K' \subseteq K$, then $hc_{K'}^S |F| \subseteq pow S$
- 2 If uc F, then uc $(hc_K^S \lfloor F \rfloor)$.
- If uc F, $F_c \subseteq F$, $S = \bigcup F_c$, $K \cap S = \emptyset$, then uc_{F_c} ($hc_K^S \lfloor F \rfloor$).
- 4 If $\forall x \in K$. w(x) = 0, then $\bar{w}_{KX}^S(F) = \bar{w}_X(\operatorname{hc}_K^S \lfloor F \rfloor)$.

Definition

Union closed extensions of a set family F_c are families of sets that are created from elements of F_c and are union closed for F_c . Family of all union closed extensions is

$$\mathsf{uce}\ F_c \equiv \{F'.\ F' \subseteq \mathsf{pow}\ \bigcup F_c \wedge \mathsf{uc}_{F_c}\ F'\}.$$

Lemma

Let F be a union closed family (i.e., uc F), and let F_c be a subfamily (i.e., $F_c \subseteq F$). Let w be a weight function on $\bigcup F$, and $\forall x \in \bigcup F \setminus \bigcup F_c$. w(x) = 0. If

$$\forall F' \in \text{uce } F_c. \ \bar{w}_{(\bigcup F_c)}(F') \geq 0,$$

then frankl F.

Theorem

A family F_c is an FC-family if there is a weight function w such that shares (wrt. w and $\bigcup F_c$) of all union closed extension of F_c are nonnegative.

Search function

How to check that $\forall F' \in \text{uce } F_c. \ \bar{w}_{(|\cdot|,F_c)}(F') \geq 0$?

- Define a procedure ssn F w, such that if ssn F $w = \bot$, then $\forall F' \in \text{uce } F_c. \ \bar{w}_{(\bigcup F_c)}(F') \ge 0.$
- The heart of this procedure is a recursive function ssn^F,w,X L F_t that will preform the systematic traversal of all union closed extensions of F, but with some pruning that speeds up the search.

Search function

Definition

Let L be a list with no repeated elements such that its set is $\{A.\ A\in \text{pow }\bigcup F_c\wedge \bar{w}_X(A)<0\}.$

$$\operatorname{ssn} F_c \ w \equiv \operatorname{ssn}^{\langle F_c \rangle, w, (\bigcup F_c)} L \emptyset$$

Search function — correctness

Lemma

lf

- 1 $\operatorname{ssn}^{F,w,X} L F_t = \bot$
- 2 for all elements A in L it holds that $\bar{w}_X(A) < 0$,
- 3 for all $A \in F' F_t$, if $\bar{w}_X(A) < 0$, then A is in L,
- $F_t \subseteq F'$,
- $\mathbf{5}$ uc_F F',

then $\bar{w}_X(F') \geq 0$.

Lemma

If ssn F $w = \bot$ and $F' \in \text{uce } F$ then $\bar{w}_{(|\cdot|F)}(F') \ge 0$.

- The formal correctness proofs are given.
- These imply that the search function is (in some sense) sound.
- The search function is also (in some sense) complete.

Search function — optimizations

- Many optimizations to the basic ssn F w definition are introduced. For example:
 - How to represent sets and families of sets so that the program becomes efficiently executable?
 - Without loss of generality assume dealing only with sets of natural numbers.
 - Encode sets of natural numbers by natural numbers (e.g., $\{0,2,3\}$ can be encoded by $2^0 + 2^2 + 2^3 = 13$). Computing unions (that is very frequent operation) then reduces to bitwise disjunction.
 - Avoid repeating same calculations by using memoization techniques.
- The function is refined 5 times, introducing optimization one by one, until a final version is obtained.
- Each version is shown to be equivalent with the previous one.

Symmetries

- Proofs of several theorems contain plenty symmetric cases.
- For example:

Theorem

Each family with three three-element sets whose union is contained in a five element set is an FC-family.

Consider families $\{\{a_0, a_1, a_2\}, \{a_0, a_1, a_3\}, \{a_2, a_3, a_4\}\}$ and $\{\{a_0, a_1, a_2\}, \{a_1, a_3, a_4\}, \{a_2, a_3, a_4\}\}$. These cases are symmetric since there is a permutation $(a_0, a_1, a_2, a_3, a_4) \mapsto (a_3, a_4, a_1, a_2, a_0)$ mapping one to another.

Avoiding symmetries

Definition

A family is uniform nkm-family if it has m members, each with k elements, and its union is an n element set.

- Symmetries are avoided by a function that finds all nonequivalent uniform nkm-families (for a given n, k, and m).
- This function is verified (if the families returned by this function are Frankl's then all non-returned nkm-families are also Frankl's).

Summary

- Using the demonstrated technique, it has been shown that the following families are FC-families:
 - {{a}}
 {{a,b}}
 - 3 All 533-families.
 - 4 All 634-families.
 - 5 All 734-families.
- Total proof checking time is around 28 minutes, most of which is devoted in computation (evaluating ssn *w F* function).

Current work

- In this talk, I only covered results on proving FC-families.
- Currently, we are working on a full characterization of FC-families upto the dimension 6 and a partial characterization for the dimension 7.
- Also, the case 12 of Frankl's conjecture is formalized (FC-families are important step since they allow pruning a huge amount of search space).
- Similar (but not the same) techniques used in proofs.
- High computation time, but (hopefully) still manageable.

Conclusions

- Formalization filled many gaps present in previous proofs.
- Proofs were not wrong (as they usually are not), but were imprecise.
- A big contribution of the formalization is the separation between abstract mathematical and computational content.