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Scientific computing

“the subfield of computer science concerned with construct-
ing mathematical models and quantitative analysis techniques
and using computers to analyze and solve scientific problems.

Wikipedia, retrieved on 2012-07-09

“is distinguished from most other parts of computer science in
that it deals with quantities that are continuous, as opposed
to discrete. It is concerned with functions and equations
whose underlying variables–time, distance, velocity, tempera-
ture, density, pressure, stress, and the like–are continuous in
nature.”

M. Heath Scientific Computing. An Introductory Survey, 1997



CICM 2012, Bremen, July 13 2012

The Potsdam Institute for Climate Impact Research

“Die Rolle der Klimaforschung bleibt weiterhin, die Problem-
fakten auf den Tisch zu knallen und Optionen für geeignete
Lösungswege zu identifizieren.”

H.-J. Schellnhuber in Frankfurter Allgemeine from 2012-06-19
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The Potsdam Institute for Climate Impact Research

“The role of the climate researcher continues to be to slam the
hard facts on the table and to indicate the possible solutions
to the problems”.

H.-J. Schellnhuber in Frankfurter Allgemeine from 2012-06-19
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The Potsdam Institute for Climate Impact Research

PIK addresses crucial scientific questions in the fields of global
change, climate impacts and sustainable development.

Researchers from the natural and social sciences work to-
gether to generate interdisciplinary insights and to provide
society with sound information for decision making.

The main methodologies are systems and scenarios analysis,
modelling, computer simulation, and data integration.

PIK Mission, www.pik-potsdam.de, retrieved 2012-07-09
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Computer simulation

“Simulation is a third way of doing science. Like deduction,
it starts with a set of explicit assumptions. But unlike deduc-
tion, it does not prove theorems.

Instead, a simulation generates data that can be analyzed
inductively. Unlike typical induction, however, the simulated
data comes from a rigorously specified set of rules rather than
direct measurement of the real world.

R. Axelrod Advancing the Art of Simulation in the Social Sciences,
2003



CICM 2012, Bremen, July 13 2012

Computer simulation

“Simulation is a third way of doing science. Like deduction,
it starts with a set of explicit assumptions. But unlike deduc-
tion, it does not prove theorems.

Instead, a simulation generates data that can be analyzed
inductively. Unlike typical induction, however, the simulated
data comes from a rigorously specified set of rules rather than
direct measurement of the real world.

R. Axelrod Advancing the Art of Simulation in the Social Sciences,
2003



CICM 2012, Bremen, July 13 2012

Correctness of computer simulations

The correctness of a computer simulation therefore depends on

I having explicit assumptions

I having rigorous rules to generate data

I some relationship between the two

Sometimes, these conditions are not met. . .
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Basic economics: models of exchange

The quintessential economic situation: exchange of goods.

1. Two agents, two goods, X units of the first good, Y units of
the second.

2. Agent i has xi unit of the first good, and yi units of the
second.

3. A distribution of goods to agents, such as ((x1, y1), (x2, y2)) is
called an allocation. Agents have preferences over allocations.

4. Agents are allowed to exchange their goods in order to find a
better allocation ((x ′1, y

′
1), (x ′2, y

′
2)). Only feasible allocations

are acceptable: x ′1 + x ′2 = X , y ′1 + y ′2 = Y .

What is a good allocation?



CICM 2012, Bremen, July 13 2012

(Weak) Pareto efficiency

A feasible allocation x is a Pareto efficient allocation if there is
no feasible allocation x′ such that all agents strictly prefer x′ to x.

Varian, Microeconomic Analysis, p. 323

An allocation x is Pareto efficient, if there exists no feasible
allocation that dominates it strictly everywhere.
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Example: Cobb-Douglas economy

A typical example is the Cobb-Douglas economy, in which the
agents preferences induced by the utility functions

u1(x , y) = xa1y (1−a1)

u2(x , y) = xa2y (1−a2)

where a1, a2 ∈ (0, 1).



CICM 2012, Bremen, July 13 2012

Introducing prices

If goods have prices px , py then an initial allocation gives each
agent a budget:

Bi = pxxi + pyyi .

An agent has to solve:

maximize u(x , y) such that

pxx + pyy = Bi

Whether the resulting allocation is feasible depends on the prices.
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Walrasian equilibrium

An allocation-price pair

((x∗1 , y
∗
1 ), (x∗2 , y

∗
2 )), (px , py )

is a Walrasian equilibrium if (1) the allocation is feasible, and (2)
each agent is making an optimal choice from its budget set:

1. x∗1 + x∗2 = X , y∗1 + y∗2 = Y

2. If ui (x ′i , y
′
i ) > ui (x∗i , y

∗
i ), then pxx ′i + pyy ′i > Bi

Varian, Microeconomic Analysis, p. 325

First welfare theorem: Walrasian equilibria are Pareto efficient.
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Mainstream economics

Refinements

I several agents

I production and consumption

I iterated exchanges

I introduce agents representing banks, governments, . . .

I . . .

Most of the models used for policy advice are based on extensions
of this idea.

Problems:

I Where do prices come from?

I Which equilibria get selected?
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Multi-agent models

Multi-agent models are models in which agents interact with each
other directly.

There is no central mechanism that solves the optimization
problem and gives all agents their due.

Multi-agent models attempt to make the process of equilibrium
selection understandable.
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The Gintis model

“We thus provide, for the first time, a general, decentral-
ized disequilibrium adjustment mechanism that renders mar-
ket equilibrium dynamically stable in a highly simplified pro-
duction and exchange economy.”

“Our results should be considered empirical rather than theo-
retical: we have created a class of economies and investigated
their properties for a range of parameters.”

Herbert Gintis The Emergence of a Price System from
Decentralized Bilateral Exchange, 2006
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The Gintis model, ctd.

At PIK, the interest was fueld by the Lagom project:

“The model has provided the conceptual basis for two major
studies commissioned by the German ministry for the Envi-
ronment, the first assessing the economic implications of Ger-
man climate policy, the second designing sustainable answers
to the financial crisis.”

From the homepage of the Lagom project,

In 2009, Mandel and Botta proved results for a simplified model
with stronger assumptions. Many features of the Gintis model
resisted mathematical analysis, and reproduction of the results
failed.
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The Gintis model, ctd.

Independently, Pelle Evensen and Mait Märdin investigated the
model and published results in An Extensible and Scalable
Agent-Based Simulation of Barter Economics M.Sc. Thesis,
Chalmers 2009.
Both groups discovered a serious bug in the implementation:∑

j pijxij∑
j pijoj

was implemented as ∑
j pijxij∑
j pijxij

This led to less variance in the computation of prices, and
consequently to fast convergence.
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The Gintis model, ctd.

Main problem: the “explicit hypothesis” were ambiguous, and the
relationship to the code unclear.

“The discrepancies between the description and the original
implementation of the barter economy confirm the impor-
tance of replication.”

Evensen and Märdin, 2009

“In practice, however, model re-implementation on the basis
of narrative descriptions is nearly impossible. For consistent,
independent model re-implementation, one needs unambigu-
ous mathematical specifications.”

Botta et. al. A functional framework for agent-based models of
exchange, 2011
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Specifications in scientific computing

We need specifications that

I ensure that “explicit hypothesis” and the “rigorously specified
set of rules” are not contradicting each other

I allow checking correctness of implementations, model
re-implementation, replication of results, etc.

We found little advice on specifications in scientific computing
(e.g. Writing Scientific Software – A Guide to Good Style (Oliveira
and Stewart, 2006) doesn’t address specifications).

In many cases, the mathematical descriptions of their problems
and algorithms are insufficient as specifications.
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Example: GEM-E3

GEM-E3 is an applied general equilibrium model that covers
the interactions between the Economy, the Energy system
and the Environment. It is well suited to evaluate climate
and energy policies, as well as fiscal issues.

The GEM-E3 model has been used for several Directorates
General of the European Commission, as well as for national
authorities. The GEM-E3 modelling groups are also partner
in several research projects, and analyses based on GEM-E3
have been published widely.

GEM-E3 website, retrieved 2012-07-09
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GEM-E3 household specification

“The general specification [. . . ] can be written as follows:

max U(q(t)) =

∫ ∞
t=0

e−δtu(q(t))dt

where . . . ”

GEM-E3 reference manual p. 13

But in the code . . .
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GEM-E3 household implementation

I Continuous time has been replaced by discrete time.

I The infinite horizon has been replaced by a finite horizon.

I Therefore, the integral to be maximzed has been replaced by
a finite sum.

I The maximization has been replaced with the necessary (but
not sufficient) first-order conditions.

I . . .

Many of these steps are explained in the GEM-E3 manual, but not
in a way which would allow re-implementation of the model.
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Constructive mathematics

The gap between mathematics and programming is too large and
we need to bridge it.

“Now, it is the contention of the intuitionists (or construc-
tivists, I shall use these terms synonymously) that the basic
mathematical notions, above all the notion of function, ought
to be interpreted in such a way that the cleavage between
mathematics, classical mathematics, that is, and program-
ming that we are witnessing at present disappears.”

P. Martin-Löf, Constructive Mathematics and Computer
Programming, 1984
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Constructive mathematics and type theory

“[Type theory] provides a precise notation not only, like other
programming languages, for the programs themselves but also
for the tasks that the programs are supposed to perform.

Thus the correctness of a program written in the theory of
types is proved formally at the same time as it is being syn-
thesized.”

P. Martin-Löf, Constructive Mathematics and Computer
Programming, 1984
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Good news

We tested the expressive power of type theory by formalizing
different equilibria in Agda and Idris, together with the
relationships betwen them.

We could write specifications for certain kinds of economic agents
in Ginits-like models.

We had several sessions with Lagom modelers, and they found the
specifications understandable.



CICM 2012, Bremen, July 13 2012

Walrasian equilibrium in (old) Idris

params (omega : Vect (Vect Float nG ) nA,
prices : Vect Float nG ,
prefs : Fin nA → TotalPreorder (Vect Float nG )) {

Feasible : Vect (Vect Float nG ) nA → Set;
Feasible xss = SumCols xss = SumCols omega;

Optimal : Vect (Vect Float nG ) nA → Set;
Optimal xss = (i : Fin nA, xss ′ : Vect (Vect Float nG ) nA) →

gt (prefs i) (index i xss ′)
(index i xss) →

gt floatOrder (prices .∗ (index i xss ′))
(prices .∗ (index i xss));

WalrasEq : Vect (Vect Float nG ) nA → Set;
WalrasEq xss = (Feasible xss,Optimal xss);
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Walrasian equilibrium, revisited

Even with an established text and elementary concepts, there are
still surprises.

An allocation-price pair

((x∗1 , y
∗
1 ), (x∗2 , y

∗
2 )), (px , py )

is a Walrasian equilibrium if (1) the allocation is feasible, and (2)
each agent is making an optimal choice from its budget set:

1. x∗1 + x∗2 = X , y∗1 + y∗2 = Y

2. If ui (x ′i , y
′
i ) > ui (x∗i , y

∗
i ), then pxx ′i + pyy ′i > Bi

Varian, Microeconomic Analysis, p. 325

Question: Is pxx∗i + pyy∗i = Bi necessarily true?
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Bad news

Therefore, it appears that we can express the “explicit hypothesis”
and the “rules” that drive our simulations. . .

but not the relationship between them.

I Economic theory is mostly non-constructive (K. Vellupilai,
2002): the divide between mathematical specification and
implementations is still there.

I Most modelers are not numerical analysts: they want to use
external routines.

I No usable library of numerical methods for constructive reals.

I (Some) modelers are willing to write formal specifications, but
less willing to write formal proofs, let alone constructive
formal proofs.



CICM 2012, Bremen, July 13 2012

Bad news

Therefore, it appears that we can express the “explicit hypothesis”
and the “rules” that drive our simulations. . .

but not the relationship between them.

I Economic theory is mostly non-constructive (K. Vellupilai,
2002): the divide between mathematical specification and
implementations is still there.

I Most modelers are not numerical analysts: they want to use
external routines.

I No usable library of numerical methods for constructive reals.

I (Some) modelers are willing to write formal specifications, but
less willing to write formal proofs, let alone constructive
formal proofs.



CICM 2012, Bremen, July 13 2012

Good news

Having specifications is better than having no specifications.

Having specifications which can be partially machine-checked is
better than having specifications which cannot be machine-checked
at all.

Having classical proofs of correctness is better than having no
proofs of correctness.

Using type theory for specifications can also guide the efforts of
the constructive mathematics community.

And so on: just because we cannot now have fully verified models
should not prevent us from taking advantage of what we have!
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Some Idris datatypes

The datatype of bounded numbers in Idris:

data Fin : Nat → Set where
fO : Fin (S k)
fS : Fin k → Fin (S k)

Finite-sized lists:

data Vect : Set → Nat → Set where
Nil : Vect a O
(::) : a → Vect a n → Vect a (S n)
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Some Fin functions

Bounding a natural number:

toFin : (n : Nat) → Fin (S n)
toFin O = fO
toFin (S n) = fS (toFin n)

Canonical embedding:

next : (t : Fin n) → Fin (S n)
next fO = fO
next (fS t) = fS (next t)



CICM 2012, Bremen, July 13 2012

Maximizing utility over a finite set

We want

max : (Fin (S n) → Float) → (Fin (S n),Float)

such that

maxSpec : (u : Fin (S n) → Float) →
(i : Fin (S n)) →
(u (fst (max u)) = snd (max u),
u i 6 snd (max u))
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Maximizing utility over a finite set

max : (Fin (S n) → Float) → (Fin (S n),Float)
max {n = O } u = (fO, u fO)
max {n = S m} u = max ′ u (fO, u fO) fO

max ′ {n} u (best, bestU) c ′ =
let c = fS c ′ in -- c is the candidate
let uc = u c in

case c toFin n of -- c is the last candidate
True ⇒ if uc 6 bestU then (best, bestU)

else (c , uc)
False ⇒ if uc 6 bestU

then max ′ u (best, bestU) c
else max ′ u (c , uc) c
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Maximizing utility over a finite set

max ′ : (Fin (S n) → Float) → -- utility
(Fin (S n),Float) → -- best-so-far
Fin n → -- count / candidate
(Fin (S n),Float) -- optimum

max ′ {n} u (best, bestU) c ′ =
let c = fS c ′ in -- c is the candidate
let uc = u c in

case c toFin n of -- c is the last candidate
True ⇒ if uc 6 bestU then (best, bestU)

else (c , uc)
False ⇒ if uc 6 bestU

then max ′ u (best, bestU) c -- !
else max ′ u (c , uc) c -- !
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Maximizing utility over a finite set

forceEmbed : Fin (S n) → Fin n
forceEmbed i = ?

max ′ {n} u (best, bestU) c ′ =
let c = fS c ′ in -- c is the candidate
let uc = u c in

case c toFin n of -- c is the last candidate
True ⇒ if uc 6 bestU then (best, bestU)

else (c, uc)
False ⇒ if uc 6 bestU

then max ′ u (best, bestU) (forceEmbed c)
else max ′ u (c , uc) (forceEmbed c)
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Maximizing utility over a finite set

forceEmbed : Fin (S n) → Fin n
forceEmbed i = believe me i

max ′ {n} u (best, bestU) c ′ =
let c = fS c ′ in -- c is the candidate
let uc = u c in

case c toFin n of -- c is the last candidate
True ⇒ if uc 6 bestU then (best, bestU)

else (c, uc)
False ⇒ if uc 6 bestU

then max ′ u (best, bestU) (forceEmbed c)
else max ′ u (c , uc) (forceEmbed c)
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Programming style

How do we specify that the outputs a program X → Y have to
be in the relation R with the inputs?

Nordström et. al.:

f : (x : X ) → (y : Y ∗∗ R (x , y))

Thompson:

(f : X → Y ∗∗ (x : X ) → R (x , f x))
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Generic programming

Less code, fewer errors: generic programming.

Dependently-typed programming languages are good at generic
programming.

Example: dynamic programming for sequential decision problems.
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ReMIND-R
ReMIND-R is a global multi-regional model incorporating the
economy, the climate system and a detailed representation of
the energy sector.

It solves for an inter-temporal Pareto optimum in economic
and energy investments in the model regions, fully accounting
for interregional trade in goods, energy carriers and emissions
allowances.

ReMIND-R allows for the analysis of technology options and
policy proposals for climate mitigation.

ReMIND-R stands for ’Refined Model of Investments and
Technological Development - Regionalized’ and it is pro-
grammed in GAMS.

ReMIND-R home page, retrieved 2012-07-09
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ReMIND-R, ctd.

The intertemporal social welfare function:

U =
∑
r

(
W (r)

tend∑
t=t0

(
∆t · e−ζ(r)(t−t0)Ũ(t, r)

))

from ReMIND-R – the Equations
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Sequential decision problems

n+1 steps left

n steps left
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You are here. . .

n+1 steps left

n steps left
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These are your options. . .

n+1 steps left

n steps left
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Pick one!

n+1 steps left

n steps left
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Advance one step. . .

n+1 steps left

n steps left
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. . . collect. . .

n+1 steps left

n steps left
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. . . and go!

n+1 steps left

n steps left
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General sequential decision problems

n+1 steps left

n steps left
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Formalizing the deterministic case

NrSteps = S NrSteps ′

State : Fin NrSteps → Set

Ctrl : State (fS t) → Set

step : (s : State (fS t)) → (c : Ctrl s) →
State (next t)

reward : (s : State (fS t)) → (c : Ctrl s) →
(s ′ : State (next t)) →
Float
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Off-by-one error?

The intertemporal social welfare function in ReMIND-R:

U =
∑
r

(
W (r)

tend∑
t=t0

(
∆t · e−ζ(r)(t−t0)Ũ(t, r)

))
For tend = t0 we have:

U =
∑
r

(
W (r)

(
∆t · Ũ(t0, r)

))
In order to compute Ũ(t0, r) we need data for times t0 and t1.
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Formalizing policies

Pol(n+1)

Pol n
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Formalizing the deterministic case, ctd.

A policy is a function of type

policy : (t : Fin NrSteps ′) → (s : State (fS t)) → Ctrl s

We can take sections along the number of steps to be done:

LocalPol : (t : Fin NrSteps ′) → Set
LocalPol t = (s : State (fS t)) → Ctrl s

We can construct a “vector” of local policies:

data Pol : (t : Fin NrSteps) → Set where
Nil : Pol fO
Cons : LocalPol t → Pol (next t) → Pol (fS t)
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The value of a policy

Val (Pol(n+1))

Val (Pol n)
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Formalizing the deterministic case, ctd.

The value of a policy for a given state is the accumulated reward
we get from that state by applying the policy to the end.

Val : (s : State t) → Pol t → Float
Val Nil = 0
Val {t = fS t ′} s (Cons lp pols) =

reward s c s ′ ⊕ Val s ′ pols
where
c : Ctrl s
c = lp s
s ′ : State (next t ′)
s ′ = step s c
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Formalizing the deterministic case, ctd.

A policy for t steps is optimal if it is better than all other
alteratives for all possible matching states.

Opt : Pol t → Set

Opt {t } pol = (pol ′ : Pol t) → (s : State t) →
Val s pol ′ 6 Val s pol
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Dynamic programming

n+1 steps left

n steps left
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Formalizing the deterministic case, ctd.

Optimal extension of a policy:

OptExt : {t : Fin NrSteps ′} →
(lp : LocalPol t) →
(pol : Pol (next t)) →
Set

OptExt {t } lp pol = (lp′ : LocalPol t) →
(s : State (fS t)) →
Val s (Cons lp′ pol) 6 Val s (Cons lp pol)
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Dynamic programming, deterministic case ctd.

Bellman: an optimal extension of an optimal policy is optimal.

Bellman : {t : Fin NrSteps ′} →
(pol : Pol (next t)) → Opt pol →
(lp : LocalPol t) → OptExt lp pol →
Opt (Cons lp pol)

For any lp′ : LocalPol t and pol ′ : Pol (next t), we have for any
s : State (fS t)

Val s (Cons lp′ pols ′) 6 Val s (Cons lp pols)
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Dynamic programming, deterministic case ctd.

Proof:
Let c ′ = lp′ s, s ′ = step s c ′. We have

Val s (Cons lp′ pols ′)

= { by definition }
reward s c ′ s ′ ⊕ Val s ′ pols ′

6 { monotonicity of ⊕, pol optimal }
reward s c ′ s ′ ⊕ Val s ′ pols

= { by definition }
Val s (Cons lp′ pols)

6 { lp optimal extension }
Val s (Cons lp pols)
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Dynamic programming, deterministic case ctd.

Idris implementation:

Bellman : {t : Fin NrSteps ′} →
(pol : Pol (next t)) → Opt pol →
(lp : LocalPol t) → OptExt lp pol →
Opt (Cons lp pol)

Bellman pol pol opt lp lp opt (Cons lp′ pol ′) s =
let c ′ = lp′ s in
let s ′ = step s c ′ in

lteTrans
(plusMonR (pol opt pol ′ s ′))
(lp opt lp′ s)
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Dynamic programming, deterministic case ctd.

We reduce the problem of finding optimal policies to that of
finding optimal extensions.

extend : Pol (next t) → LocalPol t
extend pol s = max ctrlVal

where
ctrlVal : Ctrl s → Float
ctrlVal c = let s ′ = step s c in

reward s c s ′ ⊕ Val s ′ pol
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Dynamic programming, the essential kit

extend : Pol (next t) → LocalPol t
extend pol s = max ctrlVal

MaxSpec : (u : X → Float) →
(x : X ) →
u x 6 u (max utility)

extend opt : (pol : Pol (next t)) →
(lp′ : LocalPol t) → (s : State (fS t)) →
Val s (Cons lp′ pol) 6 Val s (Cons (extend pol) pol)

extend opt pol lp′ s = MaxSpec ctrlVal (lp′ s)



CICM 2012, Bremen, July 13 2012

The general case

n+1 steps left

n steps left
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The general case

What changes from the deterministic case?

NrSteps = S NrSteps ′

State : Fin NrSteps → Set

Ctrl : State (fS t) → Set

step : (s : State (fS t)) → (c : Ctrl s) →
State (next t)

reward : (s : State (fS t)) → (c : Ctrl s) →
(s ′ : State (next t)) →
Float
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The general case

What changes from the deterministic case?

NrSteps = S NrSteps ′

State : Fin NrSteps → Set

Ctrl : State (fS t) → Set

step : (s : State (fS t)) → (c : Ctrl s) →
M (State (next t))

reward : (s : State (fS t)) → (c : Ctrl s) →
(s ′ : State (next t)) →
Float
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The general case, ctd.

We consider M to be an endo-functor on Set.

M : Set → Set

Mmap : (A → B) → M A → M B

step : (s : State (fS t)) → (c : Ctrl s) →
M (State (next t))
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The general case, ctd.

What changes from the deterministic case?

LocalPol : (t : Fin NrSteps ′) → Set
LocalPol t = (s : State (fS t)) → Ctrl s

data Pol : (t : Fin NrSteps) → Set where
Nil : Pol fO
Cons : LocalPol t → Pol (next t) → Pol (fS t)
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The general case, ctd.

No changes from the deterministic case.

LocalPol : (t : Fin NrSteps ′) → Set
LocalPol t = (s : State (fS t)) → Ctrl s

data Pol : (t : Fin NrSteps) → Set where
Nil : Pol fO
Cons : LocalPol t → Pol (next t) → Pol (fS t)
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The general case, ctd.

What changes from the deterministic case?

Val : (s : State t) → Pol t → Float
Val Nil = 0
Val {t = fS t ′} s (Cons lp pols) =

reward s c s ′ ⊕ Val s ′ pols
where
c : Ctrl s
c = lp s
s ′ : State (next t ′)
s ′ = step s c
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The general case, ctd.

The return type of step. . .

Val : (s : State t) → Pol t → Float
Val Nil = 0
Val {t = fS t ′} s (Cons lp pols) =

reward s c s ′ ⊕ Val s ′ pols
where
c : Ctrl s
c = lp s
ms ′ : M State (next t ′)
ms ′ = step s c
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The general case, ctd.

. . . requiring an Mmap. . .

Val : (s : State t) → Pol t → Float
Val Nil = 0
Val {t = fS t ′} s (Cons lp pols) =

Mmap (λs ′ ⇒ reward s c s ′ ⊕ Val s ′ pols) ms ′

where
c : Ctrl s
c = lp s
ms ′ : M State (next t ′)
ms ′ = step s c
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The general case, ctd.

. . . requiring a meas : M Float → Float.

Val : (s : State t) → Pol t → Float
Val Nil = 0
Val {t = fS t ′} s (Cons lp pols) =

meas (Mmap (λs ′ ⇒ reward s c s ′ ⊕ Val s ′ pols) ms ′)
where
c : Ctrl s
c = lp s
ms ′ : M State (next t ′)
ms ′ = step s c
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The general case, ctd.

What changes from the deterministic case?

Opt : Pol t → Set

Opt {t } pol = (pol ′ : Pol t) → (s : State t) →
Val s pol ′ 6 Val s pol

OptExt : {t : Fin NrSteps ′} →
(lp : LocalPol t) →
(pol : Pol (next t)) →
Set

OptExt {t } lp pol = (lp′ : LocalPol t) →
(s : State (fS t)) →
Val s (Cons lp′ pol) 6 Val s (Cons lp pol)
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The general case, ctd.

No changes from the deterministic case.

Opt : Pol t → Set

Opt {t } pol = (pol ′ : Pol t) → (s : State t) →
Val s pol ′ 6 Val s pol

OptExt : {t : Fin NrSteps ′} →
(lp : LocalPol t) →
(pol : Pol (next t)) →
Set

OptExt {t } lp pol = (lp′ : LocalPol t) →
(s : State (fS t)) →
Val s (Cons lp′ pol) 6 Val s (Cons lp pol)
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Dynamic programming, the general case

What changes from the deterministic case?
Bellman: an optimal extension of an optimal policy is optimal.

Bellman : {t : Fin NrSteps ′} →
(pol : Pol (next t)) → Opt pol →
(lp : LocalPol t) → OptExt lp pol →
Opt (Cons lp pol)

For any lp′ : LocalPol t and pol ′ : Pol (next t), we have for any
s : State (fS t)

Val s (Cons lp′ pols ′) 6 Val s (Cons lp pols)
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Dynamic programming, the general case

No changes from the deterministic case.
Bellman: an optimal extension of an optimal policy is optimal.

Bellman : {t : Fin NrSteps ′} →
(pol : Pol (next t)) → Opt pol →
(lp : LocalPol t) → OptExt lp pol →
Opt (Cons lp pol)

For any lp′ : LocalPol t and pol ′ : Pol (next t), we have for any
s : State (fS t)
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Dynamic programming, the general case ctd.

What chages from the deterministic case?
Let c ′ = lp′ s, s ′ = step s c ′. We have

Val s (Cons lp′ pols ′)

= { by definition }
reward s c ′ s ′ ⊕ Val s ′ pols ′

6 { monotonicity of ⊕, pol optimal }
reward s c ′ s ′ ⊕ Val s ′ pols

= { by definition }
Val s (Cons lp′ pols)

6 { lp optimal extension }
Val s (Cons lp pols)



CICM 2012, Bremen, July 13 2012

Dynamic programming, the general case ctd.

What chages from the deterministic case?
Let c ′ = lp′ s, ms ′ = step s c ′. We have

Val s (Cons lp′ pols ′)

= { by definition }
meas (Mmap (λs ′ ⇒ reward s c ′ s ′ ⊕ Val s ′ pols ′) ms ′)

6 { ??? }
meas (Mmap (λs ′ ⇒ reward s c ′ s ′ ⊕ Val s ′ pols) ms ′)

= { by definition }
Val s (Cons lp′ pols)

6 { lp optimal extension }
Val s (Cons lp pols)
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Monotonicity

A sufficient monotonicity requirement for meas:

measMon : (f : X → Float) → (g : X → Float) →
((x : X ) → f x 6 g x) →
(mx : M X ) →
meas (Mmap f mx) 6 meas (Mmap g mx)
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Dynamic programming, the general case ctd.

Let c ′ = lp′ s, ms ′ = step s c ′. We have

Val s (Cons lp′ pols ′)

= { by definition }
meas (Mmap (λs ′ ⇒ reward s c ′ s ′ ⊕ Val s ′ pols ′) ms ′)

6 { measMon, monotonicity of ⊕, pol optimal }
meas (Mmap (λs ′ ⇒ reward s c ′ s ′ ⊕ Val s ′ pols) ms ′)

= { by definition }
Val s (Cons lp′ pols)

6 { lp optimal extension }
Val s (Cons lp pols)
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Dynamic programming, general case ctd.

Idris implementation:

Bellman {t } pol pol opt lp lp opt (Cons lp′ pol ′) s =
lteTrans step1 step2

where
c ′ = lp′ s
ms ′ = step s c
f = λs ′ ⇒ reward s c s ′ ⊕ Val s ′ pol ′

g = λs ′ ⇒ reward s c s ′ ⊕ Val s ′ pol

lemma1 : (s ′ : State (next t)) → f s ′ 6 g s ′

lemma1 s ′ = plusMonR (pol opt pol ′ s ′)
step1 : meas (Mmap f ms ′) 6 meas (Mmap g ms ′)
step1 = measMon f g lemma1 ms ′

step2 : meas (Mmap g ms ′) 6 Val s (Cons lp pol)
step2 = lp opt lp′ s
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Dynamic programming, the general case ctd.

What changes from the deterministic case?

extend : Pol (next t) → LocalPol t
extend pol s = max ctrlVal

where
ctrlVal : Ctrl s → Float
ctrlVal c = let s ′ = step s c in

reward s c s ′ ⊕ Val s ′ pol
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Dynamic programming, the general case ctd.

extend : Pol (next t) → LocalPol t
extend pol s = max ctrlVal

where
ctrlVal : Ctrl s → Float
ctrlVal c = let ms ′ = step s c in

meas (Mmap (λs ′ ⇒ reward s c s ′ ⊕ Val s ′ pol) ms ′)
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Dynamic programming, the essential kit

What chages from the deterministic case?

extend : Pol (next t) → LocalPol t
extend pol s = max ctrlVal

MaxSpec : (u : X → Float) →
(x : X ) →
u x 6 u (max utility)

extend opt : (pol : Pol (next t)) →
(lp′ : LocalPol t) → (s : State (fS t)) →
Val s (Cons lp′ pol) 6 Val s (Cons (extend pol) pol)

extend opt pol lp′ s = MaxSpec ctrlVal (lp′ s)
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Dynamic programming, the essential kit

No chages from the deterministic case.

extend : Pol (next t) → LocalPol t
extend pol s = max ctrlVal

MaxSpec : (u : X → Float) →
(x : X ) →
u x 6 u (max utility)

extend opt : (pol : Pol (next t)) →
(lp′ : LocalPol t) → (s : State (fS t)) →
Val s (Cons lp′ pol) 6 Val s (Cons (extend pol) pol)

extend opt pol lp′ s = MaxSpec ctrlVal (lp′ s)
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Optimization problems

We have used

max : {s : State (fS t)} → (utility : Ctrl s → Float) →
Ctrl s

MaxSpec : {s : State (fS t)} → (utility : Ctrl s → Float) →
(c : Ctrl s) →
utility c 6 utility (max utility)

What if Ctrl s is infinite, e.g. an interval?
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Optimization problems, ctd.

Current practice: use an external optimizer and assume it works.

MaxSpec serves as a documentation of this assumption.

Often, the type of utility is constrained to functions for which
MaxSpec is less of a lie.
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Optimization problems, ctd.

Current practice: use an external optimizer and assume it works.

MaxSpec serves as a documentation of this assumption.

Often, the type of utility is constrained to functions for which
MaxSpec is less of a lie.
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Optimization problems, ctd.

E.g.: for elementary functions defined on “convenient” intervals
one can show that Newton-based methods converge. The result is
an interval guaranteed to contain the solution.

Even then, formalizing the proof in Idris is not trivial: standard
proofs are classical. Thus all we can usually show is that the
resulting interval cannot fail to contain the solution.

At the moment, we use external libraries for interval analysis
anyway. . .
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Optimization problems, ctd.

E.g.: for elementary functions defined on “convenient” intervals
one can show that Newton-based methods converge. The result is
an interval guaranteed to contain the solution.

Even then, formalizing the proof in Idris is not trivial: standard
proofs are classical. Thus all we can usually show is that the
resulting interval cannot fail to contain the solution.

At the moment, we use external libraries for interval analysis
anyway. . .
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Conclusions

We have our work cut out for us:

I Specify more commonly used external routines, e.g. for
interpolation.

I Extend the dynamic programming example to a full model
such as Remind.

I Improve notation for dependent-types, e.g. where-clauses for
type declarations.

I Develop DSLs for specifications of economic, climate, etc.
models.

I Implement interval analysis methods for validated numerics.

I Prepare for the constructive mathematics revolution, e.g.
results from projects such as ForMath.
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A final word.

“The road to wisdom? Well, it’s plain
and simple to express:
Err
and err
and err again,
but less
and less
and less.”

Piet Hein (1905–1996), The Road to Wisdom, in Grooks (1966).


