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Abstract

The LCF tradition of interactive theorem proving, which was started by Milner in
the 1970-ies, appears to be tied to the classic READ-EVAL-PRINT-LOOP of sequential
and synchronous evaluation of prover commands. We break up this loop and retrofit the
read-eval-print phases into a model of parallel and asynchronous proof processing. Thus we
explain some key concepts behind the implementation of the Isabelle/Scala layer for prover
interaction and integration, and the Isabelle/jEdit Prover IDE as front-end technology.
We hope to open up the scientific discussion about non-trivial interaction models for ITP
systems again, and help getting other old-school proof-assistants on a similar track.

1 Introduction

1.1 Motivation

Isabelle [12, §6] is one of the classic members of the LCF prover family, together with Coq [12,
§4] and the variety of HOL systems [12, §1]. The survey on Isabelle [11] from 2008 provides
some entry points to the diverse tools, packages, and applications of our prover platform. It
has started as a Pure logical framework in 1989 and has grown into a general framework for
integrating logic-based tools, including automated provers and dis-provers. The Isabelle2008
version also marks the turning point of substantial reforms in the organization of the proof
process, such that it works efficiently on multi-core hardware, which is now common-place.

The original work on parallel Poly/ML and Isabelle/ML is reported in [5, 7]. The idea
was to provide a parallel LCF-style inference kernel that supports a concept of proof promises
natively, and to integrate it with the task-parallel library for future values in Isabelle/ML.
The general principle behind this is managed evaluation in ML: some parts of the system take
care to organize the execution of user code, similar to an operating system that organizes user
processes. Managed evaluation includes external POSIX shell processes run from Isabelle/ML,
which is used in Sledgehammer to run external provers implemented in C or to access the
TPTP prover farm1. Recent extensions also bridge over to evaluations that are initiated in
Isabelle/ML, but completed in Isabelle/Scala.

Soon after the initial success of parallel Isabelle it became clear that overly ambitious forking
of proofs is in conflict with the received interaction model of the TTY loop, and its canonical
front-end Proof General [2]. To illustrate this, we consider the following example:

inductive path for R :: ′a ⇒ ′a ⇒ bool — implicit proofs: monotonicity and derived rules
where
base: path R x1 x1

| step: R x1 x2 =⇒ path R x2 x3 =⇒ path R x1 x3

theorem example: path R x1 x3 =⇒ P x1 x3

∗Current research supported by Digiteo Foundation and Project Paral-ITP (ANR-11-INSE-001).
1http://www.cs.miami.edu/~tptp
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proof (induct rule: path.induct) — explicit toplevel proof
case (base x1)
show P x1 x1 〈proof 〉 — explicit sub-proof

next
case (step x1 x2 x3)
note 〈R x1 x2〉 and 〈path R x2 x3〉

moreover note 〈P x2 x3〉

ultimately show P x1 x3 〈proof 〉 — explicit sub-proof
qed

This formal Isar text follows the basic structure of mathematical documents as a sequence of
definition — statement — proof, but the (inductive) definition also involves some implicit proofs
internally. Monotonicity of the specification is a prerequisite for further internal derivations of
the introduction rules and induction principle (by the Knaster-Tarski fixed-point theorem).

The parallel batch mode of Isabelle (since 2008) forks all these proofs via the future evalu-
ation mechanism, followed by a global join over the whole collection of proofs from all theories
that are loaded into the session. This works, because proofs are not relevant for other proofs
to proceed: it is sufficient to ensure that ultimately all proofs are finished.

This important principle of proof irrelevance holds only in a weaker sense for continuous
editing and continuous checking in interactive mode. Some anomalies can occur if implicit
proofs are forked blindly, because the TTY loop assumes that commands like inductive report
synchronously about success or failure, before any other command is started. This limits the
scope of parallelism to individual command transactions: all local proofs would have to be joined
before committing to work on the next command.

Another bad effect is caused by user interrupts that interfere with parallel evaluation of
commands. Implicitly forked proof attempts that are canceled — say by the user updating the
source text, and thus causing some local re-evaluation — need to be restarted. Otherwise it
could happen that the derivation of theorem example above might contain memo-ized interrupt
exceptions in the justification for the path.induct rule.2

Apart from these problems of implicit proofs in seemingly atomic commands, parallel pro-
cessing of explicit proofs given as separate command sequences in the text is even further
removed from the received interaction model of step-wise proof scripting. The rich structure
of proof texts — with its potential for forking validations of proofs and processing sub-proofs
independently — is flattened according to depth-first traversal in the classic scripting model.

These observations should make sufficiently clear that the classic REPL concepts require
substantial reforms, to make them fit for the combination of asynchronous interaction with
parallel proof processing.

These investigations have already started in summer 2008, but it has required several years
to get to reasonably robust implementations in Isabelle/Scala and Isabelle/jEdit. An early
version is outlined in [8], the first stable release of Isabelle2011-1 (October 2011) is presented in
[10]. In the current release of Isabelle2012 (May 2012) this infrastructure for continuous proof
checking and Prover IDE support is consolidated further, but many of the underlying concepts
still need to be communicated.

The present paper is a further step to explain the concepts of the Isabelle Prover IDE. This
is also the reason why this is a user-interface paper without screenshots!

2The deeper problem is the non-monotonic behavior of future cancellation: a parallel evaluation that is not
consolidated yet and cancelled cannot be continued afterwards. This does not happen in batch mode, because
cancellation means to terminate the whole process (after printing all failures encountered so far.
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1.2 Classic REPL Architecture

The classic READ-EVAL-PRINT-LOOP is well-known from long-standing LISP tradition.
From there it made its way into many applications of symbolic computation, computer al-
gebra, interactive theorem proving, etc. The basic idea is to process a sequence of commands
one by one, and report results immediately to the user.

The division into the main phases of the loop can be explained in a first approximation
from the perspective of the LISP interpreter, which processes a sequence of LISP expressions
as toplevel declarations as follows.

READ: process the syntax of the given expression — internalize it into a semantic operation
on the program state.

EVAL: evaluate the internalized expression in the current state — run it and update the
toplevel state accordingly.

PRINT: output the result of the evaluation — externalize values, usually in the same notation
as the input.

LOOP: continue the above ad infinitum, or until the user terminates the command interpreter.

The READ-EVAL-PRINT phases structure various interpreter phases, and the LOOP phase
defines the interactive behavior of the system. The latter involves some technical details about
organizing interaction that are often taken for granted in the folklore history of these concepts.
Subsequently we attempt to recall some of this, and relate them to issues faced by classic REPL
front-ends like Proof General [2] and refined versions of its protocols in PGIP [3].

Prompt. The system prints a command prompt and flushes the output channel to ensure the
user can see it, and awaits input.3

Conceptually, the prompt behavior means full synchronization of the pair of input/output
channels. This incurs certain real-time delays, say in local interprocess-communication to flush
the buffers of the connecting pipe. For network connections the extra latency of a full round-trip
needs to be taken into account. This does not prevent implementation of distributed editors
on the World-Wide Web such as Etherpad http://etherpad.com, but the throughput of such
synchronized interaction is limited by design.

Proof General uses the command prompt as the main protocol marker — the prover is
required to decorate its prompt by special control sequences to make it work. This allows to
separate command boundaries semantically: all observable output from the evaluation phase
between two command prompts is attached to the corresponding command span in the source
text. This natural observation of the TTY loop imposes some limitations on command evalu-
ation strategies, though. It is difficult to detach asynchronous commands from the main loop
— deferred output can confuse processing of other commands. The user needs to understand
the meaning of displaced messages, and occasionally “repair” the protocol by issuing suitable
control commands for re-synchronization of the editor with the prover.

Handling of errors. Any of the READ-EVAL-PRINT phases might fail, which results in some
error output instead of regular PRINT. The LOOP needs to ensure that command transactions
are atomic: the toplevel state is only updated after a successful run; errors should result in
a clean rollback to the previous state. This means, a failing command transaction essentially

3Flushing is sometimes forgotten in implementations and only discovered when the system is run over a pipe
for the first time, without the automatic per-line flush of the terminal stream on Unix.
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results in an identity function on the state with some extra output, but it depends on details
of the prover if it moves one step forward in the command execution, or not. This might affect
command history navigation later on, say to undo steps.

Classic Proof General and especially PGIP attempt to formalize such notions of “success”
or “error” of command transactions, such that both the editor and the prover always agree on
it. This still poses problems in boundary cases, with debatable situations of non-fatal errors
that look like a command failure, but are intended as a strong warning issued by a successful
command. It also explains why developers of Isabelle proof tools had to be instructed to emit
error messages only if a subsequent failure of the whole command could be guaranteed.

For robustness it is desirable to make the integrity of command transactions independent of
accidental prover messages. This opens a spectrum of informative messages, warnings, non-fatal
errors, fatal errors etc. without affecting critical aspects of the interaction protocol.

Handling of interrupts. The aim is to allow the user to intercept command execution, say
by pressing CTRL-C or pushing some emergency brake button. The standard implementation
makes the LOOP itself uninterruptible, but enables interrupts for executing each command
(especially in the EVAL phase, which might be non-terminating). This assumes that the runtime
environment that executes the command reacts accordingly and aborts the user program.

Even many decades after the introduction of hardware interrupts and process signals (at
least on POSIX systems), interruptibility of arbitrary user-code cannot be taken for granted.
Servicing of interrupt requests might be too slow (resulting in noticeable delays), or too fast
(resulting in inconsistent internal program state). A LISP interpreter might have no problems
to poll the interrupt status frequently, but more advanced language platforms need to invest
further care to make it work reliably. Poly/ML (which underlies Isabelle/ML) is able to handle
interrupts quickly in most practical situations, with well-defined meaning of signals within a
multi-threaded process. External signals are dispatched to all threads that are configured to
accept them, and internal signals are addressed to selected threads in isolation. The JVM
(which underlies Isabelle/Scala) follows a similar model, but is more reluctant to let interrupts
interfere with regular user code: Thread.interrupt is either serviced implicitly during I/O or
needs to be explicitly polled via Thread.interrupted.

In any case, external interrupts raise further delicate questions about the integrity of com-
mand transactions. It depends on many implementation details if interrupted command trans-
action are properly rolled-back, or treated as successful without any effect. Adding the aspects
of parallel and asynchronous execution makes things even more difficult to handle properly.
For example, detached evaluations of older commands might receive a signal from the current
command evaluation unintentionally, and thus leave the front-end (and the user) in an unclear
situation concerning the state of the prover.

1.3 Command Transactions and Document Structure

Subsequently we introduce a minimal formal model of command transactions and proof docu-
ment structure, in order to clarify further elaborations of the REP model, and various required
extensions for asynchronous interaction and parallel processing. The bigger picture is given by a
document-oriented approach to prover interaction. Its content-oriented aspects are explained in
[9]. The corresponding interaction model provides first-class notions of document editing with
some version management built-in, as sketched below. The idea is to embed “small” toplevel
states into “big” document states, and provide some editing operations on that.4

4Strictly speaking, it is no longer appropriate to use the traditional term “toplevel state” for the many small
system configurations that are managed here simultaneously within the big document state.
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“Small” toplevel state (isolated commands). The local program configuration that is
managed by the toplevel is represented as explicit value st. A command transaction is essentially
a partial function on a toplevel state: we write st −→tr st ′ as relation, or st ′ = tr st as partial
function application. The transaction can be internally structured according to the classic
READ-EVAL-PRINT phases. As first approximation tr = read ; eval ; print is merely the
sequential composition of certain internal operations.

The original motivation for this sub-structuring was given by the LISP interpreter, with its
intern−run−extern phases, but our main purpose is to organize incremental checking of proof
documents. So we characterize the three phases by their relation to the toplevel state:

tr st =
let x = read src in
let (y , st ′) = eval x st in
let () = print st ′ y in st ′

This means read is a prefix of the command transition that does not depend on input
state, and print a suffix that does not change the output state. Only the core eval operation
may operate on the semantic state arbitrarily. The src input is essentially a parameter of the
command transaction, i.e. the concrete command span given in the text.

In reality there might be syntax phases that do require access to the state, but they can be
conceptually included in the inner eval function.

Document structure. The overall document structure has two main dimensions: local body of
text as sequence of commands and global outline as directed-acyclic graph (DAG). The nodes of
this graph may be understood as “modules”, which are called “theories” in Isabelle, “vernacular
files” in Coq, and “articles” in Mizar.

In some sense this structuring of command transitions is accidental, but motivated by the
typical situation in proof assistants: sequences of commands that are evaluated left-to-right and
are organized in strictly foundational order of the theory graph. Cyclic module structure is not
permitted, in contrast to programming languages like Haskell or Java. Semantically, we can
linearize the DAG by producing a canonical walk-through, which means a proof document can
be considered (w.l.o.g.) as locally sequential as follows:

st −→tr st ′ −→tr ′
st ′′ . . .

Thus we can ignore the outer DAG structure in many theoretical considerations. Although,
the module graph is an important starting point to organize the execution process efficiently.
More ambitious re-organization would take the inherent structure of the command sequence
into account, as introduced for parallel batch proof-checking in [7, 5].

Our reformed view on READ-EVAL-PRINT shall admit such non-trivial scheduling by the
prover in interaction, while retaining a sequential reading of the text and its results that are
presented to the user in the editor front-end.

“Big” document state (version history). A single document consists of a certain composi-
tion of command transactions as described above. Document edits can re-arrange the structure
by inserting or removing intervals of command spans. This results in different document versions
that are related by a certain history of edits. Each document version is implicitly associated
with an execution process that evaluates its content according to the original sequential reading
of the text, but implements a certain evaluation strategy on its mathematical meaning, to make
good use of the physical resources of the machine.

The global Document .state covers all these aspects, by providing a few operations:
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Document .init : Document .state
Document .update: version-id → version-id → edit∗ → Document .state → Document .state
Document .remove-versions: version-id∗ → Document .state → Document .state

This means Document .update v1 v2 edits updates the global document state by turning old
v1 into new v2, applying the given edits on the command structure. The result is registered
with the global state. This declarative update on the structure leads to certain modifications
of the implicit execution process that is associated with the new version, re-using the partial
execution state of the old one. The prover determines the details according to the semantics of
the document content; the protocol refrains from speaking about that.

Additional fine-points Document .update are determined by the structure of edit, which is a
concrete datatype with variants to insert or remove command spans from the text, or to indicate
node dependencies in the DAG of modules, or to declare the so-called perspective of the front-
end on the document structure. The latter represents the visible parts of the document and thus
provides important hints to assign priorities to the incremental evaluation process: compared
to a large hidden part of imported theory library and the potentially large unprocessed part
of still pending text, the active area seen in the perspective is relatively small. This locality
property helps to make document change management reactive and scalable.

The physical text editor is connected to the document model by classic GUI event handlers.
Thus various elementary editor options will eventually become a sequence of document edits
that are pipe-lined towards the prover: insert or remove text, open or closing windows, scroll
within open windows etc. The granularity of document versions is determined implicitly via
certain real-time delays (in the range of 50–500 ms), such that edits are grouped and not every
single keystroke will be passed through the protocol layer.

Document .remove-versions informs the prover that the editor is no longer interested in
certain parts of the history; this amounts to de-allocation of resources in the document model.
In practice it is sufficient to keep a short prefix of the editing history alive, one that is sufficient
to cover the distance of physical editor buffer from a few document versions that are being
processed in the pipeline towards the prover, and the actual execution process that is currently
run by the prover. The current implementation prunes the history periodically every 60 s.

2 READ-EVAL-PRINT revisited

2.1 Prover Syntax (READ)

Prover syntax is a surprisingly difficult topic, especially in Isabelle with its many layers, several
of them with computationally complete mechanisms to operate on user input: syntax trans-
lations, type-reconstruction in multiple stages, etc. A general approach to reform LCF-style
provers to reveal some aspects of their internal semantic content is explained in [9].

For the present purpose of prover interaction, it is sufficient to consider the superficial
command language, which is called outer syntax in Isabelle/Isar, and vernacular in Coq. This
means we need to cover only the first two layers of Isabelle syntax, and ignore the other 10.

Historically, the Isar language was designed at the same time as early versions of Proof Gen-
eral, which explains some syntactic details of the language that allow a modest Emacs LISP
program to discover so-called “command-spans” reliably in the text. Thus users need to write
funny quotes around the “inner syntax” of the logical framework, but it leads to simple and
robust separation of command boundaries. In contrast, Proof General for Coq involves a few
more heuristics and approximations.
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Despite such simplifications, the cumulative CPU resources for parsing command spans as
the user is editing the text can approach the same order of magnitude as proof checking itself. In
typical applications, only few proof commands consume significant evaluation time, but many
commands require a certain overhead for the concrete syntax.

In §1.3 we have already isolated the read phase of the command transaction as a part that
is independent of the semantic state. This means we can reorganize the command application
sequence to perform all read phases independently, before starting to evaluate the composition:

↓read ↓read . . .
st −→eval st ′ −→eval st ′′ . . .

The read phase is required to be a total operation that terminates quickly. Syntax errors need
to be encoded into the result, e.g. by producing error tokens, and postponing actual runtime
exceptions to the eval phase that runs the internalized command text later on.

Nonetheless, the result of the preliminary read phase already contains useful information
about the basic structure of the text, such as keywords and quoted text ranges that may
be reported back to the front-end to produce some syntax-highlighting, based on authentic
information from the prover, not the typical approximations as regular-expressions in the editor.

The diagram above admits at least two further re-organizations to improve performance:

Internalization of results of each read of the command source, such that it can be referenced
later by some symbolic id (notably in operations of the document model). To achieve this we
provide an auxiliary operation on the “big” document state:

Document .define-command : id → string → string → Document .state → Document .state

Document .define-command id name src registers some command src text for further use via
id. The name is an aspect of the parsed content that has already been discovered by approx-
imative parsing on the editor side; it helps the prover to organize document processing before
commencing the actual read phase.

In Isabelle2012 read merely means to scan Isabelle “symbols” (ASCII + UTF8 text charac-
ters + infinitely many named mathematical symbols like \<forall>), and to tokenize according
to outer syntax keyword tables and some fixed formats for identifiers and quoted text ranges.

Until Isabelle2011-1, full outer syntax parsing used to be part of the read phase, but it is
now moved into eval. Thus we can support extension of the command language within Isabelle
theories smoothly: for the first time of the history of Isabelle, the system does not depend on
external keyword tables generated in batch mode, and commands can be used in the same
theory body where they were defined. This detail is particularly important for developers of
derivative tools in the Isabelle framework, who introduce their own commands in user-space.

Parallelization of the read phases, which neither depend on the toplevel state nor on each
other. The parsing involved in Document .define-command could be forked as future task, and
joined only before command evaluation starts.

This simple parallel parsing scheme used to be present in Isabelle2011-1, but was replaced
by more modest lazy evaluation in Isabelle2012 in the course of some fine-tuning for 2–4 core
machines. The reduced read phase no longer justified the (small) overhead for fork/join in the
preparatory stage of command transaction. It might become relevant again when the system is
optimized for hardware with 8–16 cores, where every tiny potential for parallelism needs to be
exploited to make use of the available CPU resources.
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2.2 Managed Evaluation (EVAL)

Our standard model for evaluation of user code is that of Standard ML with a few restrictions
and extensions. This covers the following in particular:

• strict functional evaluation, without global side-effects; (program state is managed by the
value-oriented context data concept of the Isabelle framework);

• program exceptions according to Standard ML, to indicate non-local exits from functional
programs;

• physical exceptions as intrusion of the environment into the program execution (mapped
to the special Interrupt exception);

• potential non-terminating, but interruptible execution;

• I/O via official Isabelle/ML channels for writeln, warning, tracing messages etc. or via pri-
vate temporarily files as input to private external processes (this emulates value-oriented
behavior on the file-system).

The Isabelle system infrastructure uses a variety of standard implementation techniques to
define an explicit transaction context for user commands. This includes message channels that
are explicitly tagged with an execution identifier, to attach output to the proper place, despite
physical re-ordering in the parallel execution environment.

Unlike a real operating system that can use hardware mechanisms to enforce integrity of
user processes, Isabelle/ML requires user commands to be well-behaved in the above sense.
For example, output on raw TextIO.stdOut from the Standard ML Basis Library results in
a side-effect on that process channel that cannot be retracted by the transaction management
of Isabelle (this does not cause any further harm than user confusion about where some raw
output is coming or going). In contrast, writeln from the Isabelle/ML library attaches a
message to the dedicated output stream of the running transaction; it will be located wrt. the
original command span in the source text (within a certain document version), and disappear
if the transaction is reset or discontinued due to document updates.

Implementation Notes. The Isabelle/ML infrastructure to manage evaluation of user code
has emerged over the last five years. Some of the main concepts are as follows.

• Unevaluated expressions are represented by existing means of ML, either as unit abstrac-
tion fn () => a of type unit -> ’a or as regular function fn a => b of type ’a -> ’b.
There are special combinators (variants of function application) that define a certain
“runtime mode” for evaluation. For example, the combinators uninterruptible and
interruptible indicate that an ML expression is run with certain thread attributes.

• Reified results as explicit ML datatype that represents the disjoint sum of regular values
or exceptional situations:

datatype ’a result = Res of ’a | Exn of exn

val capture: (’a -> ’b) -> ’a -> ’b result

val release: ’a result -> ’a

The corresponding few lines of Isabelle/ML library greatly help to organize evaluation of
user code. There are additional means to distinguish regular program exceptions from
environmental effects (interrupts).
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Reified results are occasionally even communicated explicitly in the interaction protocol.
For examples, a malformed Isabelle theory header in the editor buffer is already discovered
as part of the organization of files in the front-end; it is passed through the protocol as
Exn value and produces a runtime error when the corresponding command transaction
is run by the prover. Thus we can formally hold up the requirement to make external
syntax and protocol operations total, and postpone failures to the runtime environment
within the prover.

• Functional wrappers for evaluation strategies, notably the following:

– Type ’a future represents value-oriented parallelism, with strict evaluation that is
commenced eventually, unless the corresponding future task group is canceled. Reg-
ular results and program exceptions are memo-ized; environmental exceptions lead
to an explicitly “canceled” state of the future from which it cannot recover. Future
task identifiers help to organize dependencies within the implicit queue, and hier-
archic group identifiers allow to define the propagation of exceptions and interrupts
between peers and subgroup members.

This task-parallel concept of Isabelle/ML is used to implement a small library of
parallel list operations, with more conventional combinators like map, exists, etc.
as closed expressions with full joining of results.

– Type ’a promise is a variant of ’a future that lacks the built-in policies of parallel
evaluation of closed expressions. Instead, there is merely a synchronized single-
assignment cell that is associated with a pro-forma future task, so that other future
tasks can depend on it. A promise can be fulfilled by external means, and thus
cause other future evaluations to be commenced. This admits a form of reactive
parallel programming in Isabelle/ML: open promises define the minimal elements
of a dependency graph, with outgoing edges of regular futures, and other futures
depending on them. After all required promises are fulfilled, the parallel evaluation
process starts to run, until completed or cancelled.

– Type ’a lazy represents expressions that are fully evaluated at most once, by an
explicit force operation. Regular results and program exceptions are memo-ized, but
not physical events. Interrupting an attempt to force a lazy value will cause an
interrupt of the caller, and keep the lazy value in its unevaluated state.

– ’a memo is a synchronized single-assignment cell similar to ’a lazy, but with memo-
ization of interrupts. In user-code, accidental absorption of physical events would
lead to anomalies, but here we use it to organize incremental evaluation of different
document versions. After cancelling the current attempt to evaluate a document
version, the system recovers from the partial result so far, and restarts any command
transactions that have produced a result states with persistent interrupts.

• External evaluation via some GNU bash script, to invoke arbitrary POSIX processes from
the ML runtime environment, with propagation of interrupts in both directions.

• Remote evaluation via an ML-Scala bridge, to invoke functions of type String => String

on the JVM. Thus some ML worker thread temporarily transfers its runtime to a Scala
counterpart.

Managed evaluation with different strategies is at the core of the Prover IDE concept. It
turns out as more important for the user-experience than fancy GUI programming.
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2.3 Prover Output (PRINT)

The PRINT phase is somehow dual to READ (§2.1). The original intention of the REPL model
is to externalize the result of evaluation in a human-readable form, but this can mean many
different things for proof assistants.

Printing may already happen during evaluation, as a trace of the ongoing execution. Con-
ceptually, we decorate all prover messages with the id of the running transaction, in order to
re-assemble the output stream in the proper order, relatively to the original source of the com-
mand span (or local positions within its source, say for warnings and errors that are directly
attached to malformed parts).

Traditionally, the main result of an interactive proof step is the subsequent proof state, which
is printed implicitly for proof commands. Since proof states often consist of large terms that
require substantial time for printing (often more than the time for inferencing), it makes sense
to organize the print phase by continuing our REP diagram in the obvious manner:

↓read ↓read . . .
st −→eval st ′ −→eval st ′′ . . .

↓print ↓print . . .

This means after the last eval phase has finished, the system can fork the corresponding
print and proceed with the next eval. So the main evaluation thread will plough through the
sequence of commands and fork many parallel print jobs. Doing this naively easily saturates
the future task queue with relatively insignificant jobs that print proof states of invisible parts
of the document, while the user is working elsewhere.

This observation in earlier versions of our document model has motivated the explicit notion
of perspective. Thus the visible parts of the text are explicitly declared by suitable document
edit operations, based on information from the physical editor and its views on the text buffer.
The print phase is initialized as a lazy expression, which is turned into an active future only
if the perspective uncovers it. Afterwards it is guaranteed to finish, without any support to
reset or cancel it. This is sufficient under the assumption that printing always terminates in
reasonable time.

The above scheme integrates the traditional pr command of Isabelle into the document
model in a reasonably efficient manner. Considering the potential for long-running or non-
terminating print tasks not an accident, but a genuine concept to be supported eventually,
we could generalize pr towards a large class of diagnostic commands over finished command
evaluations. This would mean to piggy-back non-trivial analysis tools over prover commands,
that analyze the situation and produce additional output for the user. The existing portfolio
of Isabelle tools like nitpick, quickcheck, sledgehammer are examples for this.

The implementation in Isabelle2012 still lacks this generalization of the print phase towards
arbitrary “asynchronous agents” that interact with the document content after evaluation. So
far such functionality is simulated by inserting diagnostic commands into the document in the
proper place, although it disrupts the evaluation of subsequent commands.

3 Protocol Interpreter

The classic REPL model makes a tight loop around the read-eval-print phases, to synchronize
all phases immediately: emit a prompt and flush the output stream to re-synchronize with the
input stream, and run the REP phases sequentially on the single main thread of the process.

In contrast, our protocol interpreter that implements the document-oriented model (§1.3)
on the prover side works as follows.
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• A dedicated protocol input thread is connected to a private input channel from where it
reads protocol commands, and evaluates them immediately. This resembles some rudi-
ments of the former REPL, but we merely do unidirectional stream processing, without
re-synchronization by prompting the other side nor printing of results.

• Protocol commands are required to be total, i.e. must not raise any ML exceptions. Error
conditions need to be internalized into the protocol as separate messages returned to the
front-end eventually.5

• Protocol commands are required to terminate quickly, to keep the thread reactive (say
within the range of 10–100 ms). Note that the user-perception on the reactivity of the
combination of editor front-end and prover back-end needs to take a full round-trip of
certain protocol phases into account that are not explained in the present paper.

• Interrupts are blocked in the protocol thread; all operations on the main document state
happen in a runtime context that is protected from physical events. User events stemming
from the editing process have already been internalized as protocol commands into the
stream of edits. This also means that there is no longer any use of POSIX process signals,
which are so hard to manage robustly and portably for multi-threaded processes. User
code is aborted exclusively via internal signals between ML threads, say as a consequence
of cancellation of some future group by the protocol thread.

To make the protocol thread work reliably and efficiently, it is important to understand that
protocol commands are not regular user commands. The protocol defines a limited vocabulary
of certain editing operations, which need to be applied in-place and reported to the front-end
accordingly. Prover commands occur as data of such protocol commands, and are dispatched
for independent evaluation on a separate thread farm of the future task library in Isabelle/ML.

Implementation Notes. Early versions of the protocol interpreter imitated the classic Isar
command loop by using stdin and stdout with quite concrete syntax for protocol commands
and response messages, essentially an extension of the existing prover language with add-on
commands like undo or redo known from TTY mode. This was adequate for prototypes, but
had some limitations in robustness and performance.

For example, user-code may interfere with the global stdin/stdout streams of the process
and disrupt the protocol. Classic TTY and Proof General interaction is designed to tolerate
this: the user can switch to the raw protocol buffer and recover from the confusion. Such user
intervention is no longer feasible in system based on continuous streaming of document edits
towards the prover, and results reported back from many transactions run in parallel.

In the current production version the input channel is a private stream that is exclusively
available to the protocol thread. On Unix we use named pipes (raw throughput ≈ 500 MB/s)
and on Windows the more portable TCP sockets (raw throughput ≈ 100 MB/s).6 Sockets
require some effort to make them work in ML, but the Scala side consists only of a few lines
of code. In principle one could also run the protocol on a remote network connection (say via
SSH tunneling), but the performance implications have not been explored yet.7

5Hard crashes of protocol commands are reported to a side-channel that is normally invisible to users.
6Interestingly, much of this performance is lost due to the recoding of UTF-8 ML characters versus UTF-

16 JVM characters. This explains why Isabelle/Scala sometimes prefers byte vectors that are presented as
CharSequence, instead of regular String.

7The protocol uses relatively high band-width, but can afford long latency. Current timeouts for flushing
edits are in the comfortable range of 100–500 ms, so one could probably reduce that to take network latency
into account. The protocol engine has been tested successfully with 1 ms delays for its local buffers.
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Spurious output on raw stdout/stderr is captured as well, and shown in a special console on
demand. Thus we handle tools gracefully that violate the official PRINT conventions (§2.3).

The protocol command syntax has been reduced to the bare minimum to maximize perfor-
mance and robustness. Errors in the encoding of the protocol would lead to failures that are
difficult to repair, so we strive to avoid them by keeping things simple.

Each command consists of a non-empty list of strings: name and arguments. This structure is
represented by explicit length indications in the protocol header, so that the protocol interpreter
can read precise chunks from the stream without extra parsing. Decoding of arguments is left
to the each protocol command implementation.

There have been early attempts (inherited from PGIP) to use standard XML documents to
carry protocol data, but it requires awkward maintenance of XML element names and XML
attributes to accommodate the quasi-human-readable attitude and other complications of stan-
dard XML. Instead, we now use a dedicated library in Isabelle/ML and Isabelle/Scala that
performs data encoding of typed ML values over untyped/unnamed XML trees, in the same
manner as the ML compiler would do it for untyped bit-strings in memory. These raw XML
trees are then transferred via YXML syntax [9, §2.3] in a robust way.

This ML/XML/YXML data exchange is both efficient and easy to use, without demanding
extra infrastructure for cross-language meta-programming (ML vs. Scala). Runtime type-safety
of such minimalistic marshalling of tuples, lists, algebraic datatypes etc. is ensured by close in-
spection of a few lines of combinator expressions, both in the ML and the Scala side of the
protocol implementation. This works in practice, because these program modules are main-
tained together in the same code repository. The accidental data formats that are encoded on
the byte stream between the Isabelle/ML and Isabelle/Scala process is private to the imple-
mentation. The public programming interface is defined by typed functions in ML or Scala,
not the protocol messages themselves.

4 Conclusion

The issue of providing sophisticated user-interface support for sophisticated provers has been
revisited many times over many years. Early efforts by [4] have eventually found their way into
Proof General [2], which is still the de-facto standard. Its approach to wrap up the existing
REPL of the prover has been continued by other projects like CoqIde [12, §4] or Matita [1].

The deeper reason for the success of the classic Proof General approach is its conservativity
wrt. the prover interaction model. Any prover that provides a reasonable REPL with some
formal markup and an undo command can participate.

Investigating possibilities beyond Proof General, Aspinall and others have already pointed
out the need to reform provers themselves. This eventually lead to the PGIP protocol definition
[3] and its proposed front-end PG Eclipse. The idea was to replace Emacs and Emacs LISP
by industrial-strength Eclipse and Java. In retrospective, we see a variety of reasons why this
approach did not become popular in the proof assistant community: it demands substantial
efforts to implement and maintain PGIP in the prover side, and requires higher-order people
to engage in profane Java. Moreover, we consider the interaction model of PGIP still too close
to classic Proof General, so the returns for the investment to support it were not sufficient.

Our strategy to bridge the cultural gap between ML and the JVM is based on Scala [6].
After non-trivial reforms on the prover side, the current state of concepts and implementation
of Isabelle/ML/Scala and Isabelle/jEdit as Prover IDE on top of it should have reached a state
where other projects can join the effort, either on the back-end or front-end side. The ultimate
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goal is a substantial renovation of the LCF-approach to interactive theorem proving, for coming
decades of applications. There are ongoing discussions with some Coq experts to transfer some
of the ideas presented here to their world.

Moreover, the Isabelle implementation is expected to improve further in the near future. The
main conceptual omission is the management of diagnostic commands over proof documents
(cf. the discussion of the PRINT phase). We intend to support a notion of “asynchronous
agents” natively, which will allow to attach automated provers and disprovers provided by
Sledgehammer and Quickcheck in Isabelle already. Such advanced modes of tool-assisted proof
authoring needs to be worked out further and turned into practice.
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