
The GF Mathematical Grammar Library: from

OpenMath to natural languages

Olga Caprotti1 and Jordi Saludes2 ∗

1 Chalmers and University of Gothenburg
caprotti@chalmers.se

2 Universitat Politècnica de Catalunya
jordi.saludes@upc.edu

1 Introduction

Since 2005 we have been developing a software library for rendering, reading, and translating
mathematical expressions, either expressed using formal languages such as OpenMath or LATEX,
or in a number of natural languages. The work begun with the WebALT [1] project as a way to
serve mathematical exercises in the native language of the student: in fact the library can be
used to generate natural language descriptions of formally encoded mathematical expressions
with no loss of meaning. The applications of this technology, coming from the area of grammar-
based machine translation are related to the possibility of parsing and generating high quality
representations of mathematics.

In this short paper we concentrate on few technical details that made the work interesting
from the linguistic point of view. Therefore we introduce the computational linguistic software
used as backbone to the work, called Grammatical Framework, and proceed with the presenta-
tion of the mathematical library, its organization and modular design. We then discuss some
examples that required careful thought.

1.1 The Grammatical Framework

The Grammatical Framework (GF) is a type theoretic programming language for writing gram-
mars for multiple languages at once [3]. Multilingual applications use an interlingua: the se-
mantics of an expression in natural language that should be rendered or translated is captured
in an abstract tree, which is its language-independent representation. As it turns out, the ab-
stract tree representation is also a natural representation of mathematical expressions, one that
is also akin to the OpenMath abstract objects.

These trees are described by an abstract grammar defining what is possible to express in
the specific application, whilst the concrete grammars (one for each language) define how the
abstract meaning is converted to the given language. Once an abstract grammar is given, to add
yet another language to the application amounts to adding a new concrete grammar. Ideally,
if a concrete grammar for a language in the same linguistic group is already available, the
grammar for the new language is almost an exact copy of the existing grammar, modulo some
lexicon adaptations. GF hides all linguistic details of a specific language from the programmer
in a low-level resource grammar library, so that in principle a domain expert is able to develop
new languages for a given application. Details of the GF Grammar Library, including language
coverage, are online1.

∗The research leading to these results has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n° FP7-ICT-247914.

1http://www.grammaticalframework.org/lib/doc/synopsis.html

1



The Mathematical Grammar Library Caprotti and Saludes

A GF abstract grammar defines how expressions in given categories are combined. An
example tree in the Mathematical Grammar Library (MGL) looks as follows:

mkProp

(lt_num (abs (plus (BaseValNum (Var2Num x) (Var2Num y))))

(plus (BaseValNum (abs (Var2Num x)) (abs (Var2Num y)))))

When linearized with the English and Spanish concrete grammars, it yields the natural
language expressions2:

the absolute value of the sum of x and y is less than the sum of the absolute value
of x and the absolute value of y

el valor absoluto de la suma de x e y es menor que la suma del valor absoluto de x
y el valor absoluto de y

As mentioned above, the abstract tree is not far from the OpenMath expression. The
linguistic function mkProp wraps the wording produced by the subexpressions. In terms of
computational linguistic technology, this approach differs from the standard statistical based
approaches, such as Google Translate, in that it can generate high quality translations for
arbitrarly deep nesting of subexpressions, as opposed to being limited by n-grams distance.

The number of categories on a GF application is a trade-off between how much ambiguity
is tolerable and the expressiveness of the whole system. The defined categoriesin the MGL
are Value X, and Variable X where X is a Number, a Function, a Set or a Tensor (namely
vectors or matrices). The actual version of the library implements these by defining a fixed
category for each combination {Variable,Value} × {Number,Set,Function,Tensor}. Thus, for
instance, VarNum = Variable Number and ValSet = Value Set. Other categories stand for
propositions, geometric constructions and indexes.

Each abstract category corresponds to a linguistic category in a concrete grammar of a
specific language. Usually a Value points to a noun phrase and a Variable to a string. More
complex expressions, those combining categories, correspond in a natural way to linguistic
entities composed from these elements: propositions are mapped into clauses with grammatical
polarity, operations to sentences and simple exercises to texts.

2 The Mathematical Grammar Library

The library can be organized in a matrix, where the horizontal axis runs over the languages
while the vertical axis covers layers of complexity of mathematical expressions.

At present the languages are: Bulgarian, Catalan, English, Finnish, French, German, Hindi,
Italian, Polish, Romanian, Russian, Spanish, Swedish and Urdu. As a proof of concept, it in-
cludes also a couple of computer software languages which are relevant to mathematics, namely
LATEX and Sage [2].

The vertical axis runs over three layers of increasing complexity:

1. Ground: literals, indexes and variables

2. OpenMath: modeled after the following Content Dictionaries, considered useful for
expressing the mathematical fragments at the time of the WebALT project:

2Notice the special form of the conjunction “x e y”: The usual Spanish conjunction “y” must be changed for
euphony before a vowel that sounds alike. It is automatically taken care by the GF Spanish resource grammar.

2



The Mathematical Grammar Library Caprotti and Saludes

• arith1, arith2, complex1, integer1, integer2, logic1, nums1, quant1, relation1,
rounding1;

• calculus1, fns1, fns2, interval1, limit1, transc1, veccalc1;

• linalg1, linalg2;

• minmax1, plangeo1, s data1, set1, setname1.

3. Operations: takes care of simple mathematical exercises. These appear in drilling ex-
ercises and usually begin with directives such as ‘Compute’, ‘Find’, ‘Prove’, ‘Give an
example of’, etc.

Objects in the OpenMath standard [5] relate to GF types, namely each symbol in a Content
Dictionary (CD) roughly corresponds to a production of the same name in a GF module named
after that CD. Application of functions to numbers are expressed by the production At that
takes a Value Function and a Value Number and return a Value Number. More examples are
in the table 1.

Following the lines of the Small Type System [4, principle 4], we imposed that binary asso-
ciative functions take a list of values and return a value of the same kind. For example, plus
in arith1 has signature plus : [ValNum] → ValNum, while the category [ValNum] (meaning
a list of numeric values) is declared to take at least two values. Therefore is impossible by
construction to add a single number (i. e. “the sum of 3”).

3 Linguistic peculiarities

Some interesting points on the implementation are related to language specifics. For example,
the simple exercise that asks for computing a numeric value 3:

DoComputeN ComputeV (determinant (Var2Tensor M))

gives in English:

Compute the determinant of M .

This pattern is shared in most of the languages, so it got abstracted into an incomplete concrete
grammar file OperationsI. From this module, one can get OperationsL for language L simply
by specifiying the lexicon and paradigms modules for this L, in a similar way a function is applied
to its arguments. But in French is impolite to use an imperative in this case; Therefore the
module OperationsFre should re-implement this production in a specific way.

Another point worth mentioning is function application. Notice the different forms:

• “the cosine of 3”

• “f at 3”

• “the derivative of the sine at 3”

• “x to the cosine of x where x is 3”

They are all mathematically equivalent but differ in structure: in the first case, the function
being applied is a named symbol (the cosine) while in the last one is a λ-abstraction. In the
other cases, it is a function variable or it comes from a functional operator.

3determinant belongs to the OpenMath layer of the library and Var2Tensor makes a value out of a variable.
DoComputeN denotes an exercise asking to compute a number, while ComputeV gives finer control on which verb
to use to denote computation (‘to compute’ in this case).

3



The Mathematical Grammar Library Caprotti and Saludes

OpenMath GF
Symbol name in CD name in module CD

Integer n n converted to Value from predefined type Int in
module Literals

Variable name name in category Variable X
Application of a on b a b
Binding λz app lambda z app, where z is a Variable and app a Value.
Attribution, Error, Bytearray Not supported

Table 1: Some equivalences between the OpenMath standard and grammar library

4 Applications and future development

The library is publicly available at the MOLTO repository [7] and is documented at [8]. It is
being used in the mathbar demo in the MOLTO project [6] accessible from [9]. An example of
natural language interaction with a computer algebra system can be retrieved from the sage

directory of the library distribution and has been recently presented at [12].
For the future, the library needs to grow in breadth and shape: at this moment, it is

systematically tested for three languages but depends on domain experts native speakers to
polish the remaining ones.

Integration of natural language productions and formulas is also prominent in the TODO
list. This is a variegated issue as [10] shows, but it is necessary for fluent mathematics in
applications. Also more natural renderings of logical propositions [11] will open the door to
usage in automatic reasoners and theorem provers.

References

[1] http://webalt.math.helsinki.fi/content/index_eng.html Last viewed June 2012.

[2] http://www.sagemath.org/ Last viewed May 2012.

[3] A. Ranta, “Grammatical Framework: programming with Multilingual Grammars,” CSLI
Studies in Computational Linguistics, Standford, 2011.

[4] J. H. Davenport, “A small OpenMath type system,” ACM SIGSAM Bulletin, vol. 34,
no. 2, pp. 16–21, Jun. 2000.

[5] OpenMath Consortium, “The OpenMath Standard,” OpenMath Deliverable, vol. 1, 2000.

[6] The MOLTO project. http://www.molto-project.eu/ Last viewed May 2012.

[7] The mathematical library svn://molto-project.eu/mgl.

[8] J. Saludes et al., “Simple drill grammar library,” http://www.molto-project.eu/sites/

default/files/d61.pdf. Last viewed May 2012.

[9] Grammatical framework demos. http://www.grammaticalframework.org/demos/index.
html. Last viewed May 2012.

[10] Mohan Ganesalingam, “The Language of Mathematics.” PhD thesis, Cambridge Univer-
sity, 2009.

[11] A. Ranta, “Translating between language and logic: what is easy and what is difficult.”
Automated Deduction, CADE-23, 2011.

[12] Dominique Archambault, Olga Caprotti, Aarne Ranta and Jordi Saludes, “Using GF
in multimodal assistants for mathematics.” Digitization and E-Inclusion in Mathematics
and Science 2012, Tokyo, Japan.

4

 http://webalt.math.helsinki.fi/content/index_eng.html
http://www.sagemath.org/
http://www.molto-project.eu/
svn://molto-project.eu/mgl
http://www.molto-project.eu/sites/default/files/d61.pdf
http://www.molto-project.eu/sites/default/files/d61.pdf
http://www.grammaticalframework.org/demos/index.html
http://www.grammaticalframework.org/demos/index.html

	Introduction
	The Grammatical Framework

	The Mathematical Grammar Library
	Linguistic peculiarities
	Applications and future development

